系统仿真学报 ›› 2024, Vol. 36 ›› Issue (5): 1152-1164.doi: 10.16182/j.issn1004731x.joss.22-1486

• 研究论文 • 上一篇    下一篇

层级引导的增强型多目标萤火虫算法

赵嘉1(), 赖智臻1, 吴润秀1, 崔志华2, 王晖1   

  1. 1.南昌工程学院 信息工程学院,江西 南昌 330099
    2.太原科技大学 计算机科学与技术学院,山西 太原 030024
  • 收稿日期:2022-12-12 修回日期:2023-02-15 出版日期:2024-05-15 发布日期:2024-05-21
  • 第一作者简介:赵嘉(1981-),男,教授,博士,研究方向为复杂系统建模与优化、智能计算与计算智能、大数据与深度学习等。 E-mail:zhaojia925@163.com
  • 基金资助:
    国家自然科学基金(52069014);江西省教育厅科技计划(GJJ180940)

Hierarchical Guided Enhanced Multi-objective Firefly Algorithm

Zhao Jia1(), Lai Zhizhen1, Wu Runxiu1, Cui Zhihua2, Wang Hui1   

  1. 1.School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
    2.College of Computer Sclence and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Received:2022-12-12 Revised:2023-02-15 Online:2024-05-15 Published:2024-05-21

摘要:

针对多目标萤火虫算法在求解过程中易产生振荡和聚集现象,导致开发能力较弱、求解精度不佳的问题,提出一种层级引导的增强型多目标萤火虫算法(hierarchical guided enhanced multi- objective firefly algorithm, HGEMOFA)。构建层级引导模型,利用非支配排序获得不同层级个体,用优势层个体引导劣势层个体进化,明确引导方向,解决了进化过程中出现的振荡,减少了聚集现象的出现,增强了算法收敛性;引入莱维飞行扰动最优层个体,增强算法的全局搜索能力;每代进化完成后,对当前种群采用变异机制,增强算法的局部开发能力;把变异后的种群和前一代种群合并进行环境选择,筛选出和前一代种群规模相同的子代,避免优势解丢失。实验结果表明:HGEMOFA能有效增强解的收敛性和多样性。

关键词: 多目标优化, 萤火虫算法, 层级引导, 莱维飞行, 变异

Abstract:

The multi-objective firefly algorithm is easy to produce oscillation and aggregation phenomenon in the solution process, which leads to weak development ability and poor solution accuracy. This paper proposes a hierarchical guided enhanced multi-objective firefly algorithm (HGEMOFA). HGEMOFA builds a hierarchical guidance model, uses non-dominated sorting to obtain different levels of individuals. The individuals in the dominant layer are used to guide the evolution of the individuals in the inferior layer, the guidance direction is clear, the oscillation in the evolution process is solved, the aggregation phenomenon is reduced, and the convergence of the algorithm is enhanced. The Lévy flight is introduced to disturb the optimal layer individuals to enhance the global search ability of the algorithm; After each generation of evolution, the mutation mechanism is adopted for the current population to enhance the local development ability of the algorithm; The mutated population is combined with the previous generation population for environmental selection to screen out offspring with the same population size as the previous generation to avoid loss of dominance solution. The experimental results show that HGEMOFA can effectively enhance the convergence and diversity of solutions.

Key words: multi-objective optimization, firefly algorithm, hierarchical guidance, Lévy flight, mutation

中图分类号: