系统仿真学报 ›› 2022, Vol. 34 ›› Issue (11): 2406-2415.doi: 10.16182/j.issn1004731x.joss.21-0607

• 仿真建模理论与方法 • 上一篇    下一篇

基于改进SIR模型的反转事件舆情传播控制研究

唐建荣(), 鲍佳彤()   

  1. 江南大学 商学院,江苏  无锡  214122
  • 收稿日期:2021-06-30 修回日期:2021-10-08 出版日期:2022-11-18 发布日期:2022-11-25
  • 通讯作者: 鲍佳彤 E-mail:tangjianrong703@603.com;6190903001@stu.jiangnan.edu.cn
  • 作者简介:唐建荣(1963-),男,博士,教授,研究方向为不确定性预测、决策理论与方法。E-mail:tangjianrong703@603.com
  • 基金资助:
    国家自然科学基金(7187011262);中央高校基本科研业务费专项基金(2015JDZD11);苏南资本市场研究中心项目(2017ZSJD020)

Research on Network Public Opinion Transmission Mechanism of Inversion Event Based on Integrating Improved SIR Model

Jianrong Tang(), Jiatong Bao()   

  1. School of Business, Jiangnan University, Wuxi 214122, China
  • Received:2021-06-30 Revised:2021-10-08 Online:2022-11-18 Published:2022-11-25
  • Contact: Jiatong Bao E-mail:tangjianrong703@603.com;6190903001@stu.jiangnan.edu.cn

摘要:

为识别恶性新闻反转事件中谣言的传播规律和更有针对性地制定引导决策,提出了一种模拟病毒信息传播的短期预测模型。改进了传统SIR(susceptible infected removed)模型,解决了以往与SD(systems dynamics)模型结合时受限于马尔可夫链而导致转化率固定单一的问题,且以“哮喘女童”事件为例,进行了数据验证。结果表明,模型不仅能有效模拟单次反转事件中的舆情传播危机,分析往期事件处理满意度、官方信息透明度和政府响应时间等控制因素对事件走向的影响,并且能够复现出传统模型中不易看到的传播特征。

关键词: 新闻反转, 舆情传播, SIR模型, 系统动力学

Abstract:

In order to identify the spreading rules of rumors in vicious news reversal events and make more targeted guiding decisions, a short-term prediction model is proposed to simulate the spread of virus information. This paper improves the traditional susceptible infected removed (SIR) model and solves the problem that the conversion rate is fixed and single due to the limitation of Markov chain when it is combined with systems dynamics (SD) model. The data is validated with the example of "asthmatic girls" . The results show that the model not only effectively simulates the crisis of public opinion communication in a single reversal event, but also analyzes the influence of control factors such as the satisfaction of previous events, the transparency of official information and the government response time on the trend of the event, and reproduces the transmission characteristics that are not easily revealed in the traditional model.

Key words: news inversion, public opinion dissemination, susceptible infected removed (SIR) model, system dynamics

中图分类号: