系统仿真学报 ›› 2026, Vol. 38 ›› Issue (1): 112-124.doi: 10.16182/j.issn1004731x.joss.25-0824

• 论文 • 上一篇    下一篇

基于时空Swin Transformer的流固耦合交互序列图像预测网络

邹长军, 葛志宇, 钟晨曦   

  1. 华东交通大学 信息与软件工程学院,江西 南昌 330013
  • 收稿日期:2025-09-01 修回日期:2025-10-15 出版日期:2026-01-18 发布日期:2026-01-28
  • 第一作者简介:邹长军(1987-),男,副教授,博士,研究方向为深度学习、计算机视觉等。
  • 基金资助:
    国家自然科学基金(62162027);江西省高校人文社会科学研究项目(JC24205);华东交通大学创新创业教育研究课题(24hjct18);大学生创新创业训练计划项目(202410404014);大学生创新创业训练计划项目(202510404021)

Spatio-temporal Swin Transformer-based Flow-solid Coupling Interaction Sequence Image Prediction Network

Zou Changjun, Ge Zhiyu, Zhong Chenxi   

  1. School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
  • Received:2025-09-01 Revised:2025-10-15 Online:2026-01-18 Published:2026-01-28

摘要:

针对现有流体动力学模拟方法在动态流固耦合交互场景中长时间依赖建模与多尺度特征提取不足的问题,提出一种融合ConvLSTM与Swin Transformer的时空深度学习模型(SwinLSTM)。通过门控驱动的时空协同注意力机制,将Swin Transformer的窗口多头自注意力(W-MSA)动态嵌入ConvLSTM输出门,实现时序-空间特征的自适应耦合;设计多级ConvLSTM特征提取框架,分层解析固体与流固耦合的复杂时空关联。在自建流固交互数据集上的实验结果表明:所提方法在各数据集上的PSNR指标均取得第一的优异成绩,在SSIM指标上也处于领先位置,且在涡旋细节保持与边界一致性方面显著优于主流模型。所提方法为动态流体交互场景的高效预测提供了新思路。

关键词: 深度学习, 流体动力学, 图像预测, ConvLSTM, Swin Transformer

Abstract:

To address limitations in modeling long-term dependencies and multi-scale features in fluid-structure interaction scenarios, a spatiotemporal deep learning model (SwinLSTM) integrating ConvLSTM and Swin Transformer is proposed. The model employs a gated spatiotemporal attention mechanism that dynamically embeds Swin Transformer's window-based multi-head self-attention into ConvLSTM's output gate, enabling adaptive temporal-spatial feature coupling, and designs a multi-level ConvLSTM framework to hierarchically capture complex spatiotemporal correlations. Experiments on a self-built fluid-interaction dataset show that our method achieves the highest PSNR and leading SSIM scores, with superior performance in preserving vortex details and boundary consistency. This work provides an efficient solution for fluid dynamics prediction in interactive scenarios.

Key words: deep learning, computational fluid dynamics, image prediction, ConvLSTM, Swin Transformer

中图分类号: