| [1] |
Wang Haixin, Cao Yadi, Huang Zijie, et al. Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey[EB/OL]. (2024-08-22) [2025-07-26]. .
|
| [2] |
Lino M, Fotiadis S, Bharath A A, et al. Current and Emerging Deep-learning Methods for the Simulation of Fluid Dynamics[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479(2275): 20230058.
|
| [3] |
Cuomo S, Di Cola V S, Giampaolo F, et al. Scientific Machine Learning Through Physics-informed Neural Networks: Where We Are and What's Next[J]. Journal of Scientific Computing, 2022, 92(3): 88.
|
| [4] |
Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1981: 674-679.
|
| [5] |
Box G E P, Jenkins G M. Time Series Analysis: Forecasting and Control[M]. Oakland: Holden-day, 1970.
|
| [6] |
Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
|
| [7] |
Cortes C, Vapnik V. Support-vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
| [8] |
Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back-propagating Errors[J]. Nature, 1986, 323(6088): 533-536.
|
| [9] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
| [10] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-assisted Intervention – MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
|
| [11] |
Elman J L. Finding Structure in Time[J]. Cognitive Science, 1990, 14(2): 179-211.
|
| [12] |
Hochreiter S, Schmidhuber J. Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
| [13] |
Cho K, Van Merrienboer B, Bahdanau D, et al. On the Properties of Neural Machine Translation: Encoder-decoder Approaches[EB/OL]. (2014-10-07) [2025-07-26]. .
|
| [14] |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810.
|
| [15] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680.
|
| [16] |
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
| [17] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale[EB/OL]. (2021-06-03) [2025-07-26]. .
|
| [18] |
Liu Ze, Lin Yutong, Cao Yue, et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows[EB/OL]. (2021-08-17) [2025-07-26]. .
|
| [19] |
Geng Shaoyang, Zhai Shuo, Li Chengyong. Swin Transformer Based Transfer Learning Model for Predicting Porous Media Permeability from 2D Images[J]. Computers and Geotechnics, 2024, 168: 106177.
|
| [20] |
Ruan Weilin, Zhong Siru, Wen Haomin, et al. Vision-enhanced Time Series Forecasting via Latent Diffusion Models[EB/OL]. (2025-02-16) [2025-07-26]. .
|
| [21] |
Guan Shanyan, Deng Huayu, Wang Yunbo, et al. NeuroFluid: Fluid Dynamics Grounding with Particle-driven Neural Radiance Fields[C]//Proceedings of the 39th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2022: 7919-7929.
|
| [22] |
Zhu M, Bazaga A, Liò P. FLUID-LLM: Learning Computational Fluid Dynamics with Spatiotemporal-aware Large Language Models[EB/OL]. (2024-06-06) [2025-07-26]. .
|
| [23] |
Zhang Bailing. Koopman Framework with Self-supervised Spectral Alignment for Multi-domain Time-series Modeling and Prediction[J]. Neurocomputing, 2025, 652: 131109.
|
| [24] |
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
|
| [25] |
肖祥云, 杨旭波. 基于物理及数据驱动的流体动画研究[J]. 软件学报, 2020, 31(10): 3251-3265.
|
|
Xiao Xiangyun, Yang Xubo. Physically-based and Data-driven Fluid Simulation Research[J]. Journal of Software, 2020, 31(10): 3251-3265.
|
| [26] |
Li Ao, Zhang Wanshun, Zhang Xiao, et al. A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-scale Hydrodynamic Prediction[J]. Water, 2024, 16(5): 625.
|
| [27] |
Foster N, Fedkiw R. Practical Animation of Liquids[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: Association for Computing Machinery, 2001: 23-30.
|
| [28] |
Stam J. Stable Fluids[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. USA: ACM Press/Addison-wesley Publishing Co., 1999: 121-128.
|
| [29] |
Fedkiw R, Stam J, Jensen H W. Visual Simulation of Smoke[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: Association for Computing Machinery, 2001: 15-22.
|
| [30] |
Müller M, Charypar D, Gross M. Particle-based Fluid Simulation for Interactive Applications[C]//Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Goslar: Eurographics Association, 2003: 154-159.
|