系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 1978-1990.doi: 10.16182/j.issn1004731x.joss.24-0244

• 论文 • 上一篇    

自适应采样与重影多尺度特征融合的轻量化焊缝缺陷检测

鲁斌1,2, 杨烜1,2, 杨振宇1,2, 高啸天1   

  1. 1.华北电力大学 计算机系,河北 保定 071003
    2.华北电力大学 河北省能源电力知识计算重点实验室,河北 保定 071003
  • 收稿日期:2024-03-14 修回日期:2024-05-17 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 杨烜
  • 第一作者简介:鲁斌(1975-),男,教授,博导,博士,研究方向为智能计算与计算机视觉、综合能源系统与大数据分析。
  • 基金资助:
    国家自然科学基金(62371188)

Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection

Lu Bin1,2, Yang Xuan1,2, Yang Zhenyu1,2, Gao Xiaotian1   

  1. 1.Department of Computer, North China Electric Power University, Baoding 071003 China
    2.Hebei Key Laboratory of Knowledge Computing for Energy & Power, North China Electric Power University, Baoding 071003, China
  • Received:2024-03-14 Revised:2024-05-17 Online:2025-08-20 Published:2025-08-26
  • Contact: Yang Xuan

摘要:

为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构建自适应权重注意力特征图。采用优化的高效加权双向特征金字塔网络作为LAW-YOLO中的特征提取网络,设计重影多尺度采样模块并引用了混合注意力机制,以增强对小目标缺陷的检测能力。实验结果表明:该方法在SteelTube数据集中mAP0.5达到97.6%,处理数据速度可达91帧/s,比基线模型提高了5.5%的平均精度及4.6%的处理速度,在保持高效性能的同时减少了25.3%的计算量和50%的模型大小,更便于部署在边缘设备上进行场景作业。

关键词: 缺陷检测, YOLOv8, 重影多尺度卷积, 感受野空间特征, 混合注意力机制

Abstract:

To improve the accuracy and speed of welding defect detection and achieve lightweight models, a lightweight weld defect detection network based on YOLOv8, named light adaptive-weight sampling-YOLO (LAW-YOLO), was proposed. A lightweight adaptive weight sampling LAWS module was designed. It constructed an adaptive weight attention feature map by learning the interacting features within the receptive field.An optimized efficient weighted bidirectional feature pyramid network was adopted as the feature extraction backbone in LAW-YOLO. Furthermore, a ghost multi-scale sampling module was designed, and a hybrid attention mechanism was introduced to enhance the detection capability for small-scale defect targets. Experimental results demonstrate that the average precision (mAP0.5) of the proposed approach on the SteelTube dataset reaches 97.6%, with a data processing speed of 91 frames per second. The approach achieves a 5.5% increase in average defect recognition accuracy and a 4.6% improvement in processing speed compared to the original model and maintains high efficiency while reducing computation by 25.3% and model size by 50%, facilitating deployment on edge devices for operational tasks.

Key words: defect detection, YOLOv8, ghost multi-scale convolution, spatial feature of receptive field, hybrid attention mechanism

中图分类号: