系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 1921-1932.doi: 10.16182/j.issn1004731x.joss.25-0311

• 专栏:数字试验与测试技术发展与展望 • 上一篇    

面向飞行员认知负荷评估的数字化仿真方法研究

范增1,2, 何明君2, 邢翔宇2   

  1. 1.北京航空航天大学 可靠性与系统工程学院,北京 100191
    2.中国航空工业集团公司成都飞机设计研究所,四川 成都 610091
  • 收稿日期:2025-04-15 修回日期:2025-06-19 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 何明君
  • 第一作者简介:范增(1982-),男,高工,博士生,研究方向为系统安全性。

Research on Digital Simulation Method for Cognitive Load Evaluation of pilots

Fan Zeng1,2, He Mingjun2, Xing Xiangyu2   

  1. 1.School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
    2.AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610091, China
  • Received:2025-04-15 Revised:2025-06-19 Online:2025-08-20 Published:2025-08-26
  • Contact: He Mingjun

摘要:

操作者的认知负荷是影响其任务绩效的重要因素。飞行员作为飞机的主要操作者,在执行复杂任务时将面临大量信息的判断和处理,极易导致认知过载和人为失误。评估任务过程中认知负荷水平将有助于改善设计、减少人误、提高系统安全性。针对多任务场景,建立一种仿真模型用于任务过程中飞行员认知负荷动态预计。基于多资源理论,引出多任务的认知负荷量化方法;考虑认知能力、任务时限、任务优先级和时间随机性,基于时间随机的增广加权Petri网,建立任务过程动态模型;基于实验测量数据计算认知负荷预计值并验证认知负荷评估模型的有效性。结果表明:敏感生理参数与认知负荷预计值显著相关。

关键词: 认知负荷, 多资源理论, 多任务, Petri网, 任务过程动态模型

Abstract:

The operator's cognitive load constitutes a critical determinant of task performance. Pilots, as the primary operators of aircraft, must face an overwhelming volume of information during complex missions, which significantly heightens the risk of cognitive overload and operational errors. Evaluating cognitive load during tasks helps reduce human errors and improve system safety by optimizing design schemes. A simulation model was established to dynamically predict the pilots' cognitive load during tasks for multi-task scenarios. Based on the multiple resource theory, a method for quantifying cognitive load in multi-task conditions was established. By considering cognitive capacity, task time constraints, task priority, and temporal randomness, a dynamic model of task process was constructed based on the random-time extended weighted Petri net. Based on the experimental data, cognitive load values were predicted, and the effectiveness of the cognitive load evaluation model was verified. The results indicate that the sensitive physiological parameter is significantly correlated with predicted values of cognitive load.

Key words: cognitive load, multiple resource theory, multi-task scenario, Petri net, dynamic model of task process

中图分类号: