1 |
Roth Karsten, Pemula L, Zepeda J, et al. Towards Total Recall in Industrial Anomaly Detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 14298-14308.
|
2 |
于豪, 蒋锦霞, 赖晓翰, 等. 基于自适应感受野的电力设备表面缺陷检测方法[J]. 系统仿真学报, 2023, 35(7): 1572-1580.
|
|
Yu Hao, Jiang Jinxia, Lai Xiaohan, et al. Surface Defect Detection of Power Equipment Using Adaptive Receptive Field Network[J]. Journal of System Simulation, 2023, 35(7): 1572-1580.
|
3 |
Zavrtanik Vitjan, Kristan Matej, Skočaj Danijel. DRÆM-a Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 8310-8319.
|
4 |
Schlegl T, Seeböck Philipp, Waldstein S M, et al. f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks[J]. Medical Image Analysis, 2019, 54: 30-44.
|
5 |
Watanabe Haruna, Ren Togo, Ogawa Takahiro, et al. Bone Metastatic Tumor Detection Based on AnoGAN Using CT Images[C]//2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech). Piscataway: IEEE, 2019: 235-236.
|
6 |
王可, 张辉, 曹意宏, 等. 面向医药生产的智能机器人及其关键技术研究综述[J]. 计算机集成制造系统, 2022, 28(7): 1981-1995.
|
|
Wang Ke, Zhang Hui, Cao Yihong, et al. Intelligent Robots and Key Technologies for Pharmaceutical Production[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1981-1995.
|
7 |
Liu Y, Li C L, Póczos B. Classifier Two Sample Test for Video Anomaly Detections[C]//BMVC. Newcastle: BMVA, 2018: 71.
|
8 |
Pang Guansong, Yan Cheng, Shen Chunhua, et al. Self-trained Deep Ordinal Regression for End-to-end Video Anomaly Detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 12170-12179.
|
9 |
Bogdoll Daniel, Nitsche Maximilian, Marius Zöllner J. Anomaly Detection in Autonomous Driving: A Survey[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2022: 4487-4498.
|
10 |
Vojir Tomas, Šipka Tomáš, Aljundi Rahaf, et al. Road Anomaly Detection by Partial Image Reconstruction with Segmentation Coupling[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 15631-15640.
|
11 |
Defard Thomas, Setkov Aleksandr, Loesch Angelique, et al. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization[C]//Pattern Recognition. ICPR International Workshops and Challenges. Cham: Springer International Publishing, 2021: 475-489.
|
12 |
Cohen Niv, Hoshen Yedid. Sub-image Anomaly Detection with Deep Pyramid Correspondences[EB/OL]. (2021-02-03) [2023-04-20]. .
|
13 |
Kingma Diederik P, Welling Max. Auto-encoding Variational Bayes[EB/OL]. (2022-12-10) [2023-04-20]. .
|
14 |
Goodfellow I, Pouget-Abadie Jean, Mirza Mehdi, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
15 |
戴俊, 王俊, 朱忠奎, 等. 基于生成对抗网络和自动编码器的机械系统异常检测[J]. 仪器仪表学报, 2019, 40(9): 16-26.
|
|
Dai Jun, Wang Jun, Zhu Zhongkui, et al. Anomaly Detection of Mechanical Systems Based on Generative Adversarial Network and Auto-encoder[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 16-26.
|
16 |
Schlegl T, Seeböck Philipp, Waldstein S M, et al. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[C]//Information Processing in Medical Imaging. Cham: Springer International Publishing, 2017: 146-157.
|
17 |
Li Chunliang, Sohn K, Yoon J, et al. CutPaste: Self-supervised Learning for Anomaly Detection and Localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 9659-9669.
|
18 |
Tsai M C, Wang Shengde. Self-supervised Image Anomaly Detection and Localization with Synthetic Anomalies[C]//2023 10th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). Piscataway: IEEE, 2023: 90-95.
|
19 |
Bergmann Paul, Fauser Michael, Sattlegger David, et al. Uninformed Students: Student-teacher Anomaly Detection with Discriminative Latent Embeddings[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 4182-4191.
|
20 |
Salehi Mohammadreza, Sadjadi Niousha, Baselizadeh Soroosh, et al. Multiresolution Knowledge Distillation for Anomaly Detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 14897-14907.
|
21 |
Wang Guodong, Han Shumin, Ding Errui, et al. Student-teacher Feature Pyramid Matching for Anomaly Detection[EB/OL]. (2021-10-28) [2023-04-20]. .
|
22 |
Bergmann Paul, Fauser Michael, Sattlegger David, et al. MVTec AD-a Comprehensive Real-world Dataset for Unsupervised Anomaly Detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 9584-9592.
|
23 |
Deng Hanqiu, Li Xingyu. Anomaly Detection via Reverse Distillation from One-class Embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 9727-9736.
|
24 |
Luo Jiaxiang, Zhang Jianzhao. A Method for Image Anomaly Detection Based on Distillation and Reconstruction[J]. Sensors, 2023, 23(22): 9281.
|
25 |
Liu Tongkun, Li Bing, Zhao Zhuo, et al. Reconstruction from Edge Image Combined with Color and Gradient Difference for Industrial Surface Anomaly Detection[EB/OL]. (2022-10-26) [2023-04-20]. .
|