系统仿真学报 ›› 2025, Vol. 37 ›› Issue (10): 2568-2577.doi: 10.16182/j.issn1004731x.joss.24-0523

• 论文 • 上一篇    

基于MLP与改进GCN-TD3的交通信号控制建模与仿真

黄德启, 涂亚婷, 张振华, 郭鑫   

  1. 新疆大学 电气工程学院,新疆 乌鲁木齐 830017
  • 收稿日期:2024-05-15 修回日期:2024-08-30 出版日期:2025-10-20 发布日期:2025-10-21
  • 通讯作者: 涂亚婷
  • 第一作者简介:黄德启(1972-),男,副教授,博士,研究方向为信号处理、智能交通、交通安全。
  • 基金资助:
    国家自然科学基金(51468062);新疆维吾尔自治区自然科学基金(2022D01C430)

Modeling and Simulation of Traffic Signal Control Based on MLP with Improved GCN-TD3

Huang Deqi, Tu Yating, Zhang Zhenhua, Guo Xin   

  1. School of Electrical Engineering, Xinjiang University, Urumqi 830017, China
  • Received:2024-05-15 Revised:2024-08-30 Online:2025-10-20 Published:2025-10-21
  • Contact: Tu Yating

摘要:

针对城市交叉口车流量不均、道路容量有限以及现有交通信号控制算法协同性较差问题,提出一种基于图卷积强化学习的交通信号控制算法。利用多层感知器提取被控路口与邻近路口的车辆及相位信息的动态特征,采用图卷积神经网络将车辆动态特征聚合为区域交通的潜在特征,由改进的双延迟深度确定性策略梯度算法进行多次迭代得到控制策略,将控制策略应用于城市路网的交通相位配时中,最大化的提升路网车辆的通行效率。仿真实验表明:该算法能够适应动态变化的复杂路网环境,且在高饱和流量下控制效果明显,能有效提高路网的通行效率,缓解交叉口高峰期拥堵问题。

关键词: 交通信号控制, 图卷积神经网络, 强化学习, 双延迟深度确定性策略梯度, 协同控制

Abstract:

To address the issues of uneven traffic flow at urban intersections, limited road capacity, and the poor coordination of existing traffic signal control algorithms, a traffic signal control algorithm based on graph convolutional reinforcement learning was proposed. By utilizing a multilayer perceptron, the dynamic features of vehicles and phase information at the controlled intersection and its neighboring intersections were extracted. A graph convolutional neural network was then employed to aggregate these vehicle dynamic features into potential features representing regional traffic. The control strategy was derived through multiple iterations of an improved twin delayed deep deterministic policy gradient (TD3) algorithm. This control strategy was applied to the traffic phase timing of the urban road network, aiming to maximize the traffic efficiency of the road network. Simulation experiments demonstrate that the algorithm can adapt to dynamically changing and complex road network environments. Moreover, the control effect is significant under high saturation flow, effectively improving the traffic efficiency of the road network and alleviating congestion at intersections during peak hours.

Key words: traffic signal control, graph convolutional neural network, reinforcement learning, twin delayed deep deterministic policy gradient (TD3), coordinated control

中图分类号: