系统仿真学报 ›› 2024, Vol. 36 ›› Issue (12): 2894-2905.doi: 10.16182/j.issn1004731x.joss.24-0566

• 论文 • 上一篇    

面向低资源的无人机指令意图识别算法及半实物仿真

刘鸿福1, 付雅晶1, 张万鹏1, 张虎2   

  1. 1.国防科技大学 智能科学学院,湖南 长沙 410073
    2.中国航天科工集团有限公司第三研究院 体系对抗与智能信息系统总体部,北京 100074
  • 收稿日期:2024-05-24 修回日期:2024-09-03 出版日期:2024-12-20 发布日期:2024-12-20
  • 第一作者简介:刘鸿福(1983-),男,副研究员,博士,研究方向为智能规划与决策博弈、作战任务规划。
  • 基金资助:
    国家自然科学基金(62173336);国防基础科研项目(JCKY2019204A007)

Algorithm and Semi-physical System Simulation for Command Intent Recognition of UAV in Low-resource Environment

Liu Hongfu1, Fu Yajing1, Zhang Wanpeng1, Zhang Hu2   

  1. 1.College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
    2.Department of System Confrontation and Intelligent Information System, the Third Research Institute of CASIC, Beijing 100074, China
  • Received:2024-05-24 Revised:2024-09-03 Online:2024-12-20 Published:2024-12-20

摘要:

在通信网络部分失能或被干扰时,无人机陷入“低资源环境”,必须依赖本地硬件资源,面临着计算能力、存储空间和能源供应的限制。针对“低资源环境”下的无人机指令意图识别研究需求,设计并实现了一个应急救灾场景中无人机指令意图识别半实物仿真系统。基于“低资源环境”的机载硬件在环,通过GIS+BIM三维环境建模任务场景,半实物仿真无人机指令意图识别与任务规划。针对核心功能指令意图识别提出了一种新的轻量化算法,基于GraphSAGE的全局句子结构信息抽取与FastText局部语义特征的共同注意力融合机制,优化提升了意图理解预测的准确率和响应速度。在构建的专业无人机指令意图数据集上,半实物仿真验证指令意图识别准确率为0.890 7、时间为58.808 ms,满足实时性要求。

关键词: 无人机, 低资源环境, 指令意图识别, 文本分类, 轻量化算法, 半实物仿真

Abstract:

When a communication network is partially disabled or disrupted, an UAV is plunged into a "low-resource environment" and must rely on local hardware resources. This situation imposes constraints on computing power, storage capacity, and energy availability. To address the need for command intent recognition in such environments, a semi-physical simulation system for UAV in emergency rescue operations has been designed and implemented. Based on the low resource airborne hardware in the loop, the system simulates UAV command intention recognition and mission planning through GIS+BIM 3D environment modeling task scenarios. A new lightweight algorithm for intent recognition has been proposed, based on the joint attention fusion mechanism of global sentence structure information extraction using GraphSAGE and local semantic features of FastText, which optimizes and improves the accuracy and response speed of intent understanding prediction. On the constructed professional UAV command intent dataset, semi-physical simulation verifies that the accuracy of command intention recognition is 0.890 7 and the time is 58.808 ms, which meets the real-time requirement.

Key words: UAV, low-resource environments, command intent recognition, text classification, lightweight algorithm, semi-physical simulation

中图分类号: