系统仿真学报 ›› 2023, Vol. 35 ›› Issue (10): 2161-2169.doi: 10.16182/j.issn1004731x.joss.23-FZ0807
收稿日期:
2023-07-02
修回日期:
2023-08-21
出版日期:
2023-10-30
发布日期:
2023-10-26
通讯作者:
何晓雨
E-mail:mfanzou@163.com;hexiaoyu@buaa.edu.cn
第一作者简介:
邹梦凡(2000-),女,硕士生,研究方向为雷达信号降雨环境散射特性。E-mail:mfanzou@163.com
Received:
2023-07-02
Revised:
2023-08-21
Online:
2023-10-30
Published:
2023-10-26
Contact:
He Xiaoyu
E-mail:mfanzou@163.com;hexiaoyu@buaa.edu.cn
摘要:
现代通信与雷达系统的工作频段已延伸至毫米波及太赫兹频段,定量分析降雨环境对该频段电磁信号传输的影响对应用系统十分重要。根据Mie理论建立了降雨环境电磁信号衰减仿真计算模型,采用不同雨滴尺寸分布模型计算了频率在1 GHz~1 THz的电磁信号在降雨环境中传输的衰减,并与ITU(international telecommunication union)经验模型进行比对以验证计算模型的有效性。针对自动驾驶雷达芯片工作频段计算了不同降雨环境条件下电磁信号散射的空间分布特性,从信号衰减与雨杂波散射的空间分布特性两方面分析降雨环境的散射特性。结果表明:在大雨和暴雨天气下77 GHz信号的衰减高于10 dB/km,显著影响信号的传输距离。
中图分类号:
邹梦凡,何晓雨 . 自动驾驶雷达频段降雨环境散射特性建模分析[J]. 系统仿真学报, 2023, 35(10): 2161-2169.
Zou Mengfan,He Xiaoyu . Modeling and Analysis on Scattering Characteristics Automatic Driving Radar Bands in Rainy Environment[J]. Journal of System Simulation, 2023, 35(10): 2161-2169.
1 | 赵振维. 水凝物的电波传播特性与遥感研究[D]. 西安: 西安电子科技大学, 2001. |
Zhao Zhenwei. Study on Radiowave Propagation Characteristics and Remote Sensing of Hydrometeors[D]. Xi'an: Xidian University, 2001. | |
2 | Shayea I, Abd Rahman T, Hadri Azmi M, et al. Real Measurement Study for Rain Rate and Rain Attenuation Conducted Over 26 GHz Microwave 5G Link System in Malaysia[J]. IEEE Access, 2018, 6: 19044-19064. |
3 | 辛进, 蒙康, 王越, 等. 三亚Ka波段卫星遥感信号降雨衰减的研究[J]. 无线电通信技术, 2022, 48(5): 879-884. |
Xin Jin, Meng Kang, Wang Yue, et al. Research on Rain Attenuation of Ka Bands Satellite Remote Sensing in Sanya[J]. Radio Communications Technology, 2022, 48(5): 879-884. | |
4 | Wang Jing, Wang Linhao, Xu Mingzhong. Rain Attenuation Analysis of Ka Band Ship-borne Satellite Communication Station in Indian Ocean and Pacific Ocean[C]//2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). Piscataway, NJ, USA: IEEE, 2020: 385-388. |
5 | Mandeep J S, Ng Y Y, Abdullah H, et al. The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia[J]. Journal of Infrared Millimeter and Terahertz Waves, 2010, 31(6): 681-689. |
6 | International Telecommunication Union. Specific Attenuation Model for Rain for Use in Prediction Methods: P.838-3 [S]. Geneva, Switzerland: International Telecommunication Union, 2005. |
7 | Weerasekera R A A D O, Samarakoon D M L Y, Dayalal D L H P P, et al. Mie-theory-based Investigation of the Effect of Size Distribution on the Surface Plasmon Absorption of Silver Nanoparticles[C]//2022 Moratuwa Engineering Research Conference (MERCon). Piscataway, NJ, USA: IEEE, 2022: 1-6. |
8 | Pimienta-del-Valle Domingo, José Manuel Riera, Pérez-Peña Santiago, et al. Characterization of Rain Attenuation in 80-200 GHz Radio Links Considering Non-spherical Raindrops[C]//2022 16th European Conference on Antennas and Propagation (EuCAP). Piscataway, NJ, USA: IEEE, 2022: 1-5. |
9 | Lai Ruize, Liu Xiantong, Hu Sheng, et al. Raindrop Size Distribution Characteristic Differences During the Dry and Wet Seasons in South China[J]. Atmospheric Research, 2022, 266: 105947. |
10 | Feingold G, Levin Z. The Lognormal Fit to Raindrop Spectra From Frontal Convective Clouds in Israel[J]. Journal of Applied Meteorology and Climatology, 1986, 25(10): 1346-1363. |
11 | Marshall J S, Palmer W Mc K. The Distribution of Raindrops With Size[J]. Journal of Atmospheric Sciences, 1948, 5(4): 165-166. |
12 | Sekine M, Lind G. Rain Attenuation of Centimeter, Millimeter and Submillimeter Radio Waves[C]//1982 12th European Microwave Conference. Piscataway, NJ, USA: IEEE, 1982: 584-589. |
13 | Shrestha S, Choi D Y. Rain Attenuation Study Over an 18 GHz Terrestrial Microwave Link in South Korea[J]. International Journal of Antennas and Propagation, 2019, 2019: 1712791. |
14 | Thorvaldsen P, Henne I. Outdoor Transmission Measurement at 26 GHz: Results of a 4 Year Trial in Prague[J]. Radio Science, 2016, 51(5): 402-410. |
15 | Regonesi E, Luini L, Riva C. Limitations of the ITU-R P.838-3 Model for Rain Specific Attenuation[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). Piscataway, NJ, USA: IEEE, 2019: 1-4. |
16 | Hasirlioglu S, Riener A. Introduction to Rain and Fog Attenuation on Automotive Surround Sensors[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ, USA: IEEE, 2017: 1-7. |
17 | Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: Wiley, 1998. |
18 | 董群锋. 毫米波段脉冲波在雨雾媒质中传输效应研究[D]. 西安: 西安电子科技大学, 2006. |
Dong Qunfeng. Study of Transmission Effects of Pulses at Millimeter Wavelengths Through Rain and Fog Medium[D]. Xi'an: Xidian University, 2006. |
[1] | 李东晟, 刘晔, 宋炎侃, 沈沉. 针对预想故障的风电集群电磁暂态等值建模方法[J]. 系统仿真学报, 2023, 35(10): 2101-2112. |
[2] | 陈珊珊, 汪红志, 夏天. 磁共振成像设备的数字孪生建模关键技术与应用[J]. 系统仿真学报, 2023, 35(10): 2122-2132. |
[3] | 刘路, 李文欣, 宋晓, 孙炳利, 龚光红. 基于模糊群决策的绿色供应商选择和订单分配方法[J]. 系统仿真学报, 2023, 35(10): 2133-2149. |
[4] | 吴鹏, 杨宗默, 景乾峰, 李玉林. 一种用于船舶操纵运动快速建模的混合经验法[J]. 系统仿真学报, 2023, 35(10): 2150-2160. |
[5] | 张天瑞, 牛慧媛, 谢薇. 基于改进飞蛾扑火算法的集成调度仿真[J]. 系统仿真学报, 2023, 35(10): 2170-2181. |
[6] | 温睿. 设计视角的作战行动结构化概念模型[J]. 系统仿真学报, 2023, 35(10): 2202-2211. |
[7] | 王宇琨, 王泽, 董力维, 李妮. 基于分层的智能建模方法的多机空战行为建模[J]. 系统仿真学报, 2023, 35(10): 2249-2261. |
[8] | 王浩宇, 龚光红, 蔡继红, 叶必鹏, 周照方, 梅铮, 李妮. 基于战场元宇宙的动态三维场景感知[J]. 系统仿真学报, 2023, 35(10): 2262-2278. |
[9] | 刘紫寒, 侯凌霄, 李杨, 王智广, 张武龙. 基于自定义向导的通用实时半实物仿真代码自动生成方法[J]. 系统仿真学报, 2023, 35(10): 2279-2287. |
[10] | 沈梓祎, 杨猛, 杨超, 唐伟棣, 伍勰, 刘宇, 盛斌. 基于单目视频的跳台滑雪飞行阶段数据提取方法[J]. 系统仿真学报, 2023, 35(9): 2035-2044. |
[11] | 袁标, 黄友锐, 徐善永, 荣雪. 光纤二次套塑车间数字孪生系统的构建与应用[J]. 系统仿真学报, 2023, 35(9): 2011-2022. |
[12] | 郭润夏, 王一府. 以维修间隔利用率最优为目标的飞机派遣方法[J]. 系统仿真学报, 2023, 35(9): 1985-1999. |
[13] | 焦嵩鸣, 首云锋, 白健鹏, 王祝. 变电站巡检无人机分层运动规划方法研究[J]. 系统仿真学报, 2023, 35(9): 1975-1984. |
[14] | 张红历, 邓井双. 基于遗传算法的人工人口生成与应用研究[J]. 系统仿真学报, 2023, 35(9): 1965-1974. |
[15] | 何玉林, 陈佳琪, 徐贺鹏, 黄哲学, 尹剑飞. 基于数据生成模型的仿真样本点插补方法[J]. 系统仿真学报, 2023, 35(9): 1948-1964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||