1 |
Schrittwieser J, Antonoglou I, Hubert T, et al. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model[J]. Nature, 2020, 588(7839): 604-609.
|
2 |
Vinyals O, Babuschkin I, Czarnecki W M, et al. Grandmaster Level in StarCraft II Using Multi-agent Reinforcement Learning[J]. Nature, 2019, 575(7782): 350-354.
|
3 |
Berner C, Brockman G, Chan B, et al. Dota 2 with Large Scale Deep Reinforcement Learning[EB/OL]. (2019-12-13) [2023-01-30]. .
|
4 |
Starken A, Mondesire S, Wu A. Trends in Machine Learning for Adaptive Automated Forces[C]//Iterservice/Industry Training, Simulation, & Education Conference(I/ITSEC), 2022, 22243: 1-13.
|
5 |
施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究[J]. 自动化学报, 2021, 47(7): 1610-1623.
|
|
Shi Wei, Feng Yanghe, Cheng Guangquan, et al. Research on Multi-aircraft Cooperative Air Combat Method Based on Deep Reinforcement Learning[J]. Acta Automatica Sinica, 2021, 47(7): 1610-1623.
|
6 |
徐佳乐, 张海东, 赵东海, 等. 基于卷积神经网络的陆战兵棋战术机动策略学习[J]. 系统仿真学报, 2022, 34(10): 2181-2193.
|
|
Xu Jiale, Zhang Haidong, Zhao Donghai, et al. Tactical Maneuver Strategy Learning from Land Wargame Replay Based on Convolutional Neural Network[J]. Journal of System Simulation, 2022, 34(10): 2181-2193.
|
7 |
胡晓峰, 齐大伟. 智能决策问题探讨——从游戏博弈到作战指挥,距离还有多远[J]. 指挥与控制学报, 2020, 6(4): 356-363.
|
|
Hu Xiaofeng, Qi Dawei. On Problems of Intelligent Decision-making-how Far is It from Game-playing to Operational Command[J]. Journal of Command and Control, 2020, 6(4): 356-363.
|
8 |
俞康伦. 兵棋设计[M]. 北京: 国防工业出版社, 2018.
|
9 |
阳曙光. 兵棋总体设计[M]. 北京: 机械工业出版社, 2018.
|
10 |
DeepMind. Pysc2[EB/OL]. (2017-08-10) [2023-03-20]. .
|
11 |
中国科学院. 庙算•陆战指挥官[EB/OL]. (2020-09-01) [2023-03-20]. .
|
12 |
孙宇祥, 彭益辉, 李斌, 等. 智能博弈综述:游戏AI对作战推演的启示[J]. 智能科学与技术学报, 2022, 4(2): 157-173.
|
|
Sun Yuxiang, Peng Yihui, Li Bin, et al. Overview of Intelligent Game: Enlightenment of Game AI to Combat Deduction[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 157-173.
|
13 |
秦晓周. 联合作战辅助决策方法研究[M]. 北京: 国防大学出版社, 2019.
|
14 |
马平, 杨功坤. 联合作战研究[M]. 北京: 国防大学出版社, 2013.
|
15 |
Millington L. AI for Games[M]. 3rd ed. 北京: 清华大学出版社, 2021.
|
16 |
石俊杰. 基于有限状态机的游戏角色控制系统设计与实现[D]. 武汉: 华中科技大学, 2016.
|
|
Shi Junjie. Design and Implementation of a FSM-based Role Control System[D]. Wuhan: Huazhong University of Science and Technology, 2016.
|
17 |
Michael M, Eilon S, Shmuel Z. Game Theory[M]. Cambridge: Cambridge University Press, 2013: 155-166.
|
18 |
周雷, 尹奇跃, 黄凯奇. 人机对抗中的博弈学习方法[J]. 计算机学报, 2022, 45(9): 1859-1876.
|
|
Zhou Lei, Yin Qiyue, Huang Kaiqi. Game-theoretic Learning in Human-computer Gaming[J]. Chinese Journal of Computers, 2022, 45(9): 1859-1876.
|
19 |
Li Zewen, Liu Fan, Yang Wenjie, et al. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 6999-7019.
|
20 |
Zunair H, Ben Hamza A. Sharp U-net: Depthwise Convolutional Network for Biomedical Image Segmentation[J]. Computers in Biology and Medicine, 2021, 136: 104699.
|
21 |
Zeiler M D, Taylor G W, Fergus R. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning[C]//2011 International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2011: 2018-2025.
|
22 |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
|
23 |
王玉宾. 面向兵棋推演的智能对抗策略生成技术研究[D]. 郑州: 战略支援部队信息工程大学, 2022.
|
|
Wang Yubin. Research on Intelligent Strategy Generation Technology for Wargame[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2022.
|
24 |
王玉宾, 孙怡峰, 吴疆, 等. 陆战对抗中的智能体博弈策略生成方法[J]. 指挥与控制学报, 2022, 8(4): 441-450.
|
|
Wang Yubin, Sun Yifeng, Wu Jiang, et al. An Agent Game Strategy Generation Method for Land Warfare[J]. Journal of Command and Control, 2022, 8(4): 441-450.
|
25 |
Perolat J, Bart De Vylder, Hennes D, et al. Mastering the Game of Stratego with Model-free Multiagent Reinforcement Learning[J]. Science, 2022, 378(6623): 990-996.
|