系统仿真学报 ›› 2023, Vol. 35 ›› Issue (6): 1245-1259.doi: 10.16182/j.issn1004731x.joss.22-0123

• 论文 • 上一篇    下一篇

基于不确定时间序列的来袭目标解算方法

杨静1,2(), 陆铭华1, 胡星辰2, 吴金平1   

  1. 1.海军潜艇学院,山东 青岛 266041
    2.国防科技大学 系统工程学院,湖南 长沙 410073
  • 收稿日期:2022-02-23 修回日期:2022-04-12 出版日期:2023-06-29 发布日期:2023-06-20
  • 作者简介:杨静(1989-),女,讲师,博士生,研究方向为智能决策技术。E-mail:estella126@126.com
  • 基金资助:
    国家自然科学基金(71701205)

An Approach to Solving the Incoming Target Based on Uncertain Time Series

Jing Yang1,2(), Minghua Lu1, Xingchen Hu2, Jinping Wu1   

  1. 1.Navy Submarine College, Qingdao 266041, China
    2.College of System and Engineering, National University of Defence and Technology, Changsha 410073, China
  • Received:2022-02-23 Revised:2022-04-12 Online:2023-06-29 Published:2023-06-20

摘要:

传统水中来袭目标解算方法缺乏对多维度、不确定观测数据的时序特征的挖掘。针对此类数据复杂性高、存在缺失的时间序列预测问题,提出了一种基于自适应窗口插补和深度可变权重长短时记忆网络模型的预测方法,以适用于多采样频率的缺失时序观测数据,并在仿真数据和公测数据集上验证。针对多源观测信息采样频率不一致造成的随机缺失问题,引入自适应窗口插补方法;根据观测信息的缺失程度自适应调整插补窗口,降低传统插补方法的误差水平。针对时间序列数据引入可变权重的长短时记忆网络模型,在适用于多采样频率的缺失时序观测数据插补的同时,根据观测信息缺失率自适应调整反向传播的损失权重。实验表明:模型在具备处理不确定数据处理能力的同时,在区间预测中比传统方法准确率更高,可以为解算来袭目标提供更有效的决策参考。

关键词: 时间序列, 自适应窗口, 可变权重长短时记忆网络, 目标解算方法

Abstract:

The traditional solution method for the incoming attacking target in water lacks the time series characteristics mining on multi-dimensional and uncertain observation data. Aiming at the time series prediction with high complexity and missing data, a method based on adaptive window interpolation and deep variable weight long-term and short-term memory network model for missing time series observation data with multiple sampling frequencies is proposed, which is compared and verified on the simulation data and public test data set. Aiming at the random missing problem caused by the inconsistency of sampling frequency of multi-source observation information, an adaptive window imputation method is introduced to adaptively adjust the imputation window according to the missing rate of observation information and reduce the error level of traditional imputation methods. The long and short-term memory network model with variable weights is introduced to time series data, and the loss weight of back propagation is adaptively adjusted according to the missing time series observation data at multiple sampling frequencies while being suitable for imputation of missing time series observation data at multiple sampling frequencies. Experiment results show that the comprehensive use of adaptive window interpolation and variable weight long-term and short-term memory network model can provide a faster and accurate decision-making reference for predicting and defending the incoming targets.

Key words: time series data, adaptive window, variable weight LSTM, target solution method

中图分类号: