系统仿真学报 ›› 2024, Vol. 36 ›› Issue (1): 27-38.doi: 10.16182/j.issn1004731x.joss.22-0996
收稿日期:
2022-08-23
修回日期:
2022-12-09
出版日期:
2024-01-20
发布日期:
2024-01-19
第一作者简介:
钟竞辉(1982-),男,教授,博士,研究方向为计算智能、机器学习与多智能体仿真。E-mail:jinghuizhong@scut.edu.cn
基金资助:
Zhong Jinghui1(), Lin Yutian2, Li Wenqiang1, Cai Wentong3
Received:
2022-08-23
Revised:
2022-12-09
Online:
2024-01-20
Published:
2024-01-19
摘要:
针对机场人群应急管控和管理智能化的需求,提出基于数字孪生的机场人群智慧管控方案。构建了包含数据层、建模层、功能层和应用层四维度的一体化人群管控系统框架,并对5个重要应用模块进行了探讨和应用效果展示。该方案通过利用数据驱动的人群仿真模型和智能优化算法,实现机场人群状态的动态预测和管控优化,能有效提升机场人群管控的效率和智能化水平,为建设智慧机场提供技术支撑。
中图分类号:
钟竞辉,林育钿,李稳强等 . 基于数字孪生的机场人群智慧管控技术[J]. 系统仿真学报, 2024, 36(1): 27-38.
Zhong Jinghui,Lin Yutian,Li Wenqiang,et al . Intelligent Airport Crowd Management Technology Based on Digital Twin[J]. Journal of System Simulation, 2024, 36(1): 27-38.
1 | 张雷. GIS+BIM在数字孪生机场建设中的应用[J]. 工程技术研究, 2021, 6(6): 12-14. |
2 | 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3): 385-392. |
Li Xin, Liu Xiu, Wan Xinxin. Overview of Digital Twins Application and safe Development[J]. Journal of System Simulation, 2019, 31(3): 385-392. | |
3 | 杨建伟. 3D协同可视化在智慧机场的应用与研究[J]. 中国设备工程, 2021(19): 64-66. |
4 | 孙凌. 数字孪生机场建设的思考[J]. 中国高新科技, 2021(14): 149-150. |
Sun Ling. Considerations on the Construction of Digital Twin Airport[J]. China High and New Technology, 2021(14): 149-150. | |
5 | 刘潇翔, 汤亮, 曾海波, 等. 航天控制系统基于数字孪生的智慧设计仿真[J]. 系统仿真学报, 2019, 31(3): 377-384. |
Liu Xiaoxiang, Tang Liang, Zeng Haibo, et al. Smart Design and Simulation of Aerospace Control System Based on Digital Twin[J]. Journal of System Simulation, 2019, 31(3): 377-384. | |
6 | 吴宏刚. 智慧民航的构想和探索[J]. 网信军民融合, 2021(7): 41-43. |
7 | Grieves M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication[EB/OL]. [2022-08-14]. . |
8 | Grieves M, Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]. Cham: Springer International Publishing, 2017: 85-113. |
9 | Zhong Jinghui, Li Dongrui, Huang Zhixing, et al. Data-driven Crowd Modeling Techniques: A Survey[J]. ACM Transactions on Modeling and Computer Simulation, 2022, 32(1): 4. |
10 | Wolinski D, Guy S J, Olivier A H, et al. Parameter Estimation and Comparative Evaluation of Crowd Simulations[J]. Computer Graphics Forum, 2014, 33(2): 303-312. |
11 | Zhao Mingbi, Stephen John Turner, Cai Wentong. A Data-driven Crowd Simulation Model Based on Clustering and Classification[C]//Proceedings of the 2013 IEEE/ACM 17th International Symposium on Distributed Simulation and Real Time Applications. Piscataway, NJ, USA: IEEE, 2013: 125-134. |
12 | Zhong Jinghui, Cai Wentong, Luo Linbo, et al. Learning Behavior Patterns from Video: A Data-driven Framework for Agent-based Crowd Modeling[C]//Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2015: 801-809. |
13 | Lerner Alon, Chrysanthou Yiorgos, Lischinski Dani. Crowds by Example[J]. Computer Graphics Forum, 2007, 26(3): 655-664. |
14 | Chen Yimeng, Wu Cheng-Lung, Lung Lau Pong, et al. Airport Passenger Shopping Modeling and Simulation: Targeting Distance Impacts[C]//2019 Winter Simulation Conference (WSC). Piscataway, NJ, USA: IEEE, 2019: 524-535. |
15 | Zhong Jinghui, Cheng Tiantian, Liu Weili, et al. An Evolutionary Guardrail Layout Design Framework for Crowd Control in Subway Stations[J]. IEEE Transactions on Computational Social Systems, 2023, 10(1): 297-310. |
16 | Park Andrew J, Zouaghi Houssem, Tsang Herbert H. Crowd Control Strategy Framework Using Real-time 3D Simulations[C]//2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). Piscataway, NJ, USA: IEEE, 2018: 253-258. |
17 | Jur van den Berg, Guy S J, Lin Ming, et al. Reciprocal n-Body Collision Avoidance[C]//Robotics Research. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 3-19. |
18 | Feliciani Claudio, Shimura Kenichiro, Yanagisawa Daichi, et al. Study on the Efficacy of Crowd Control and Information Provision Through a Simple Cellular Automata Model[C]//Cellular Automata. Cham: Springer International Publishing, 2018: 470-480. |
19 | 邵荃, 唐志星, 孙海燕, 等. 基于视频图像分析的旅客群体性事件预警方法[J]. 解放军理工大学学报(自然科学版), 2013, 14(5): 501-506. |
Shao Quan, Tang Zhixing, Sun Haiyan, et al. Mass Events Warning in Terminal Based on Video Surveillance[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2013, 14(5): 501-506. | |
20 | Zheng Yujun, Sheng Weiguo, Sun Xingming, et al. Airline Passenger Profiling Based on Fuzzy Deep Machine Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(12): 2911-2923. |
21 | 张龙财, 余美君. 航站楼到港旅客应急疏散仿真优化[J]. 综合运输, 2021, 43(10): 83-89. |
Zhang Longcai, Yu Meijun. Simulation and Majorization of the Terminal Arrival Emergency Evacuation[J]. China Transportation Review, 2021, 43(10): 83-89. | |
22 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. | |
23 | 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1-10. |
Liu Datong, Guo Kai, Wang Benkuan, et al. Summary and Perspective Survey on Digital Twin Technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10. | |
24 | Qi Qinglin, Tao Fei, Hu Tianliang, et al. Enabling Technologies and Tools for Digital Twin[J]. Journal of Manufacturing Systems, 2021, 58, Part B: 3-21. |
25 | 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. |
Yang Linyao, Chen Siyuan, Wang Xiao, et al. Digital Twins and Parallel Systems: State of the Art, Comparisons and Prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031. | |
26 | Schroeder Greyce N, Steinmetz Charles, Carlos E Pereira, et al. Digital Twin Data Modeling with AutomationML and a Communication Methodology for Data Exchange[J]. IFAC-PapersOnLine, 2016, 49(30): 12-17. |
27 | Lien S Y, Cheng S M, Shih S Y, et al. Radio Resource Management for QoS Guarantees in Cyber-physical Systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(9): 1752-1761. |
28 | Amarjeet Singh Yumnam, Chaitanya Sreeram Y, Shaik Abdul Naeem. Overview: Weblog Mining, Privacy Issues and Application of Web Log Mining[C]//2014 International Conference on Computing for Sustainable Global Development (INDIACom). Piscataway, NJ, USA: IEEE, 2014: 638-641. |
29 | Biesinger Florian, Meike Davis, Kraß Benedikt, et al. A Case Study for a Digital Twin of Body-in-white Production Systems General Concept for Automated Updating of Planning Projects in the Digital Factory[C]//2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Piscataway, NJ, USA: IEEE, 2018: 19-26. |
30 | 王巍, 刘永生, 廖军, 等. 数字孪生关键技术及体系架构[J]. 邮电设计技术, 2021(8): 10-14. |
Wang Wei, Liu Yongsheng, Liao Jun, et al. Key Technology and Architecture of Digital Twin[J]. Designing Techniques of Posts and Telecommunications, 2021(8): 10-14. | |
31 | Li Yixian, Zhong Jinghui. HAS-EA: A Fast Parallel Surrogate-assisted Evolutionary Algorithm[J]. Memetic Computing, 2023, 15(1): 103-115. |
32 | Li Xiaoyong, Yuan Jie, Ma Huadong, et al. Fast and Parallel Trust Computing Scheme Based on Big Data Analysis for Collaboration Cloud Service[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 1917-1931. |
33 | 赵慕铭. 面向视频监控场景的人群计数算法研究[D]. 上海: 上海交通大学, 2020. |
Zhao Muming. Crowd Counting in Surveillance Videos[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
34 | Li Bo, Huang Hongbo, Zhang Ang, et al. Approaches on Crowd Counting and Density Estimation: A Review[J]. Pattern Analysis and Applications, 2021, 24(3): 853-874. |
35 | Wu Wu, Nevatia R. Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors[C]//Tenth IEEE International Conference on Computer Vision (ICCV'05). Piscataway, NJ, USA: IEEE, 2005: 90-97. |
36 | Viola P, Jones M J. Robust Real-time Face Detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. |
37 | Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Piscataway, NJ, USA: IEEE, 2005: 886-893. |
38 | Su Feng, Fang Gu, Zou Jujia. Human Detection Using a Combination of Face, Head and Shoulder Detectors[C]//2016 IEEE Region 10 Conference (TENCON). Piscataway, NJ, USA: IEEE, 2016: 842-845. |
39 | Ji Tao, Liu Leibo, Zhu Wenping, et al. Fast and Efficient Integration of Human Upper-body Detection and Orientation Estimation in RGB-D Video[C]//2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). Piscataway, NJ, USA: IEEE, 2017: 1178-1181. |
40 | Zhang Yingying, Zhou Desen, Chen Siqin, et al. Single-image Crowd Counting via Multi-column Convolutional Neural Network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 589-597. |
41 | Yuan Lu, Zhang Hao, Xu Ming, et al. A Multiscale CNN Framework for Wireless Technique Classification in Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9(12): 10366-10367. |
42 | Cao Xinkun, Wang Zhipeng, Zhao Yanyun, et al. Scale Aggregation Network for Accurate and Efficient Crowd Counting[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 757-773. |
43 | Subramaniam Abhishek, Shah Vatsal G, Tibrewala Preet D, et al. Crowd Count Estimator Application using CSRNet[C]//2021 International Conference on Intelligent Technologies (CONIT). Piscataway, NJ, USA: IEEE, 2021: 1-6. |
44 | 张震宇, 董丹慧, 冯曙明, 等. 基于高斯混合模型的电力仓库视频运动目标检测[J]. 计算机与数字工程, 2021, 49(8): 1580-1583. |
Zhang Zhenyu, Dong Danhui, Feng Shuming, et al. Video Moving Target Detection in Power Warehouse Based on Gaussian Mixture Model[J]. Computer and Digital Engineering, 2021, 49(8): 1580-1583. | |
45 | Yan Mengen, Li Lianghai, Chen Haochuan. A VideoSAR Moving Target Detection Method Based on GMM[C]//2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). Piscataway, NJ, USA: IEEE, 2021: 64-69. |
46 | 卢振坤, 刘胜, 钟乐, 等. 人群计数研究综述[J]. 计算机工程与应用, 2022, 58(11): 33-46. |
Lu Zhenkun, Liu Sheng, Zhong Le, et al. Survey on Research of Crowd Counting[J]. Computer Engineering and Applications, 2022, 58(11): 33-46. | |
47 | Shekhar S, Williams B M. Adaptive Seasonal Time Series Models for Forecasting Short-term Traffic Flow[J]. Transportation Research Record, 2007, 2024(1): 116-125. |
48 | Lippi Marco, Bertini Matteo, Frasconi Paolo. Short-term Traffic Flow Forecasting: An Experimental Comparison of Time-series Analysis and Supervised Learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 871-882. |
49 | Zheng Jiangchuan, Ni L M. Time-dependent Trajectory Regression on Road Networks Via Multi-task Learning[C]//Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. Palo Alto, CA, USA: AAAI Press, 2013: 1048-1055. |
50 | Zhang Junbo, Zheng Yu, Qi Dekang, et al. DNN-based Prediction Model for Spatio-temporal Data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: Association for Computing Machinery, 2016: 92. |
51 | Wang Senzhang, Cao Jiannong, Chen Hao, et al. SeqST-GAN: Seq2Seq Generative Adversarial Nets for Multi-step Urban Crowd Flow Prediction[J]. ACM Transactions on Spatial Algorithms and Systems, 2020, 6(4): 22. |
52 | Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2015: 802-810. |
53 | Wang Senzhang, Miao Hao, Chen Hao, et al. Multi-task Adversarial Spatial-temporal Networks for Crowd Flow Prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, NY, USA: Association for Computing Machinery, 2020: 1555-1564. |
54 | Zhong Jinghui, Li Dongrui, Cai Wentong, et al. Automatic Crowd Navigation Path Planning in Public Scenes Through Multiobjective Differential Evolution[J/OL]. IEEE Transactions on Computational Social Systems. (2022-11-7) [2022-12-04]. . |
55 | Ester Martin, Kriegel Hans-Peter, Sander Jörg, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Palo Alto, CA, USA: AAAI Press, 1996: 226-231. |
56 | Chen Yewang, Zhou Lida, Pei Songwen, et al. KNN-BLOCK DBSCAN: Fast Clustering for Large-scale Data[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3939-3953. |
[1] | 阴艳超, 冯嘉胜, 易斌, 李旺, 尹庆文. 面向流程制造的数字孪生车间可视化监控系统研究[J]. 系统仿真学报, 2024, 36(1): 120-130. |
[2] | 赵彦博, 蔡远利, 胡怀中. 基于递推子空间的机组数字孪生模型预测精度优化方法[J]. 系统仿真学报, 2024, 36(1): 195-202. |
[3] | 袁标, 黄友锐, 徐善永, 荣雪. 光纤二次套塑车间数字孪生系统的构建与应用[J]. 系统仿真学报, 2023, 35(9): 2011-2022. |
[4] | 吕楠, 王琪冰, 陆佳炜, 陈军统, 肖刚. 基于数字孪生的自动扶梯乘客行为监测方法研究[J]. 系统仿真学报, 2023, 35(8): 1737-1747. |
[5] | 陆涵, 张霖, 王昆玉, 黄泽军, 程鸿博, 崔晋. 装备数字孪生可信评估框架研究[J]. 系统仿真学报, 2023, 35(7): 1455-1471. |
[6] | 徐健, 宋鑫, 刘秀平, 陈博, 闫焕营. 基于数字孪生的装配机器人建模及系统实现[J]. 系统仿真学报, 2023, 35(7): 1497-1507. |
[7] | 董泽, 姜炜, 王晓燕, 刘磊. 数字孪生在火电机组数字化转型中的应用[J]. 系统仿真学报, 2023, 35(6): 1144-1156. |
[8] | 姚舜, 胡忠志, 曹文宇, 杨佳利. 沉浸式航空发动机视景系统的设计与实现[J]. 系统仿真学报, 2023, 35(6): 1395-1404. |
[9] | 刘红彬, 申志强, 王轶泽, 邱明, 林文荣. 数字孪生模型在轴承套圈磨削加工中的应用[J]. 系统仿真学报, 2023, 35(3): 557-567. |
[10] | 杨帆, 马萍, 李伟, 杨明. 数字孪生体可信度评估过程及指标研究[J]. 系统仿真学报, 2023, 35(2): 350-358. |
[11] | 冯琦琦, 董志明, 彭文成, 戴翊, 司炳山. 几种典型的虚实融合技术发展研究[J]. 系统仿真学报, 2023, 35(12): 2497-2511. |
[12] | 涂潜, 李俊, 范东亮, 孔琪, 沈洁. 面向数字孪生的变电站三维场景自动目标识别[J]. 系统仿真学报, 2023, 35(12): 2594-2601. |
[13] | 徐国轩, 苌道方, 李佳琦, 凌强. 自动化集装箱码头数字孪生数据建模及评价方法研究[J]. 系统仿真学报, 2023, 35(12): 2641-2654. |
[14] | 毛子泉, 高家隆, 龚建兴, 刘权. 虚实结合仿真在军事领域的应用综述[J]. 系统仿真学报, 2023, 35(11): 2289-2311. |
[15] | 陈珊珊, 汪红志, 夏天. 磁共振成像设备的数字孪生建模关键技术与应用[J]. 系统仿真学报, 2023, 35(10): 2122-2132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||