系统仿真学报 ›› 2022, Vol. 34 ›› Issue (8): 1874-1884.doi: 10.16182/j.issn1004731x.joss.21-0336

• 国民经济仿真 • 上一篇    下一篇

考虑光伏发电不确定性的日前火电-光伏经济调度

刘兴华1(), 耿晨1, 谢胜寒1, 田佳强1(), 曹晖2   

  1. 1.西安理工大学 电气工程学院,陕西 西安 710054
    2.西安交通大学 电气工程学院,陕西 西安 710049
  • 收稿日期:2021-04-20 修回日期:2021-05-27 出版日期:2022-08-30 发布日期:2022-08-15
  • 通讯作者: 田佳强 E-mail:liuxh@xaut.edu.cn;tjq1992@mail.ustc.edu.cn
  • 作者简介:刘兴华(1984-),男,博士,教授,研究方向为智能电网运行优化与控制。E-mail:liuxh@xaut.edu.cn
  • 基金资助:
    国家自然科学基金(61903296);陕西省教育厅重点实验室项目(20JS110);陕西省青年科技新星项目(2020KJXX-094)

Day Ahead Thermal-photovoltaic Economic Dispatch Considering Uncertainty of Photovoltaic Power Generation

Xinghua Liu1(), Chen Geng1, Shenghan Xie1, Jiaqiang Tian1(), Hui Cao2   

  1. 1.School of Electrical Engineering, Xi'an University of Technology, Xi'an 710054, China
    2.School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2021-04-20 Revised:2021-05-27 Online:2022-08-30 Published:2022-08-15
  • Contact: Jiaqiang Tian E-mail:liuxh@xaut.edu.cn;tjq1992@mail.ustc.edu.cn

摘要:

针对光伏发电受季节天气因素影响产生的不确定性和随机性的问题,建立了考虑光伏发电不确定性的日前火电-光伏经济调度的数学模型。以传统火电机组的运行成本、光伏发电成本、旋转备用成本,以及受到季节天气因素影响的光伏发电预测误差成本为经济目标函数;以火电机组的二氧化硫排放为环保目标函数。为提高光伏出力预测的准确性,采用加入季节天气因素的长短时记忆神经网络对于光伏发电进行预测,通过Cplex对所构建的模型进行求解,结果表明了所提模型的有效性和可行性。

关键词: 经济调度, 光伏发电, 预测误差成本, 长短时记忆神经网络

Abstract:

Aiming at the uncertainty and randomness of photovoltaic power generation affected by weather factors, a mathematical model of day ahead thermal-photovoltaic economic dispatch considering seasonal weather factors is established. The mathematical model takes the operation cost of thermal power units, the cost of photovoltaic power generation, the cost of spinning reserve and the forecast error cost of photovoltaic power generation affected by weather factors as the economic objective function, and the sulfur dioxide emission of thermal power units as the environmental objective function. In order to improve the accuracy of photovoltaic output prediction, the long short term memory neural network with seasonal weather factors is used to predict the photovoltaic power generation. The model is solved by Cplex, and the effectiveness and feasibility of the proposed model are proved by case simulation.

Key words: economic dispatch, photovoltaic power generation, prediction error cost, long short term memory neural network

中图分类号: