系统仿真学报 ›› 2018, Vol. 30 ›› Issue (6): 2405-2413.doi: 10.16182/j.issn1004731x.joss.201806051

• 仿真应用工程 • 上一篇    下一篇

界面曲率对超疏水微通道减阻的影响

李春曦, 张硕, 叶学民   

  1. 电站设备状态监测与控制教育部重点实验室(华北电力大学),河北 保定 071003
  • 收稿日期:2016-07-29 修回日期:2016-12-21 出版日期:2018-06-08 发布日期:2018-06-14
  • 作者简介:李春曦(1973-),女,唐山,博士,教授,研究方向为流体力学及流体工程等;张硕(1991-),女,邢台,硕士生,研究方向为流动减阻;叶学民(1973-),男,邢台,博士,教授,研究方向为流体力学及流体工程。

Effect of Interfacial Curvature on Drag Reduction of Superhydrophobic Microchannels

Li Chunxi, Zhang Shuo, Ye Xuemin   

  1. Key Lab of Condition Monitoring and Control for Power Plant Equipment of Education Ministry (North China Electric Power University), Baoding 071003, China
  • Received:2016-07-29 Revised:2016-12-21 Online:2018-06-08 Published:2018-06-14

摘要: 针对具有横向微槽的超疏水微通道中的流动减阻特性,采用Fluent模拟了微通道中的二维层流流动,分析了气-液界面曲率、流动和结构参数对减阻效果的影响。结果表明:压降比和滑移长度随凸出角增大均呈单驼峰曲线变化;θ=θopt时,随自由剪切面积比和周期单元长度增加,压降比和滑移长度均提高,减阻效果显著;当θ?θn,尤其是θ?90°时,横向微槽起增阻作用,且提高自由剪切面积比和周期单元长度将显著降低压降比和滑移长度,增阻作用愈加显著;雷诺数对减阻效果影响很小。

关键词: 超疏水表面, 微通道, 数值模拟, 气-液界面曲率

Abstract: The two-dimensional fluid flow in superhydrophobic microchannels with transverse grooves was numerically simulated with Fluent to investigate the impact of the liquid-gas interface curvature on the effective slip behavior in the laminar regime. The effects of shear-free fraction, normalized periodic cell length and Reynolds number on the normalized slip length and pressure drop reduction are also examined. The results show that as protrusion angle increases, the normalized slip length and pressure drop reduction exhibit with single-hump variations. When θ=θopt, increments in the normalized slip length and pressure drop reduction tend to be greater as shear-free fraction and normalized periodic cell length decrease, leading to the better drag reduction effect. When θ?θn, especially θ?90°, the transverse grooves deteriorate flow resistance, and the normalized slip length and pressure drop reduction decrease significantly with increasing shear-free fraction and normalized periodic cell length. The effect of Reynolds number on drag reduction is approximately negligible.

Key words: superhydrophobic surfaces, microchannels, numerical simulation, gas-liquid interface curvature

中图分类号: