| [1] |
Dana K J, van Ginneken Bram, Nayar S K, et al. Reflectance and Texture of Real-world Surfaces[J]. ACM Transactions on Graphics, 1999, 18(1): 1-34.
|
| [2] |
Lawrence J, Ben-Artzi A, Decoro C, et al. Inverse Shade Trees for Non-parametric Material Representation and Editing[J]. ACM Transactions on Graphics, 2006, 25(3): 735-745.
|
| [3] |
Matusik W. A Data-driven Reflectance Model[D]. Cambridge: Massachusetts Institute of Technology, 2003.
|
| [4] |
Jannik Boll Nielsen, Jensen H W, Ramamoorthi R. On Optimal, Minimal BRDF Sampling for Reflectance Acquisition[J]. ACM Transactions on Graphics, 2015, 34(6): 186.
|
| [5] |
Xu Zexiang, Jannik Boll Nielsen, Yu Jiyang, et al. Minimal BRDF Sampling for Two-shot Near-field Reflectance Acquisition[J]. ACM Transactions on Graphics, 2016, 35(6): 188.
|
| [6] |
Asselin Louis-Philippe, Laurendeau Denis, Lalonde Jean-François. Deep SVBRDF Estimation on Real Materials[C]//2020 International Conference on 3D Vision (3DV). Piscataway: IEEE, 2020: 1157-1166.
|
| [7] |
Guo Jie, Lai Shuichang, Tao Chengzhi, et al. Highlight-aware Two-stream Network for Single-image SVBRDF Acquisition[J]. ACM Transactions on Graphics, 2021, 40(4): 123.
|
| [8] |
Ye Wenjie, Li Xiao, Dong Yue, et al. Single Image Surface Appearance Modeling with Self-augmented CNNs and Inexact Supervision[J]. Computer Graphics Forum, 2018, 37(7): 201-211.
|
| [9] |
Chen Zhe, Nobuhara Shohei, Nishino Ko. Invertible Neural BRDF for Object Inverse Rendering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9380-9395.
|
| [10] |
Santo Hiroaki, Samejima Masaki, Sugano Yusuke, et al. Deep Photometric Stereo Networks for Determining Surface Normal and Reflectances[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 114-128.
|
| [11] |
Ren Peiran, Wang Jiaping, Snyder J, et al. Pocket Reflectometry[J]. ACM Transactions on Graphics, 2011, 30(4): 45.
|
| [12] |
Lin Y, Peers P, Ghosh A. On-site Example-based Material Appearance Acquisition[J]. Computer Graphics Forum, 2019, 38(4): 15-25.
|
| [13] |
Hui Zhuo, Sunkavalli K, Lee J Y, et al. Reflectance Capture Using Univariate Sampling of BRDFs[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 5372-5380.
|
| [14] |
Deschaintre Valentin, Aittala Miika, Durand Fredo, et al. Single-IMAGE SVBRDF Capture with a Rendering-aware Deep Network[J]. ACM Transactions on Graphics, 2018, 37(4): 128.
|
| [15] |
Li Zhengqin, Sunkavalli K, Chandraker M. Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 74-90.
|
| [16] |
Wen Tao, Wang Beibei, Zhang Lei, et al. SVBRDF Recovery from a Single Image with Highlights Using a Pre-trained Generative Adversarial Network[J]. Computer Graphics Forum, 2022, 41(6): 110-123.
|
| [17] |
Zhao Yezi, Wang Beibei, Xu Yanning, et al. Joint SVBRDF Recovery and Synthesis from a Single Image Using an Unsupervised Generative Adversarial Network[C]//Eurographics Symposium on Rendering - DL-only Track. Geneva: The Eurographics Association, 2020: 53-66.
|
| [18] |
Deschaintre Valentin, Aittala M, Durand F, et al. Flexible SVBRDF Capture with a Multi-image Deep Network[J]. Computer Graphics Forum, 2019, 38(4): 1-13.
|
| [19] |
Gao Duan, Li Xiao, Dong Yue, et al. Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images[J]. ACM Transactions on Graphics, 2019, 38(4): 134.
|
| [20] |
Guo Yu, Smith C, Hašan Miloš, et al. MaterialGAN: Reflectance Capture Using a Generative SVBRDF Model[J]. ACM Transactions on Graphics, 2020, 39(6): 254.
|
| [21] |
Li Zhiqiang, Shen Xukun, Hu Yong, et al. High-resolution SVBRDF Estimation Based on Deep Inverse Rendering from Two-shot Images[J]. The Visual Computer, 2023, 39(10): 4609-4622.
|
| [22] |
Deschaintre Valentin, Drettakis G, Bousseau A. Guided Fine-tuning for Large-scale Material Transfer[J]. Computer Graphics Forum, 2020, 39(4): 91-105.
|
| [23] |
Zhou Xilong, Kalantari N K. Adversarial Single-image SVBRDF Estimation with Hybrid Training[J]. Computer Graphics Forum, 2021, 40(2): 315-325.
|
| [24] |
Goodfellow I, Pouget-Abadie Jean, Mirza Mehdi, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
| [25] |
Zhang Xiuming, Srinivasan P P, Deng Boyang, et al. NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination[J]. ACM Transactions on Graphics, 2021, 40(6): 237.
|
| [26] |
Zhou Shuyao, Zhu Tianqian, Shi Kanle, et al. Review of Light Field Technologies[J]. Visual Computing for Industry, Biomedicine, and Art, 2021, 4(1): 29.
|
| [27] |
Matusik W, Pfister H, Brand M, et al. Efficient Isotropic BRDF Measurement[C]//Proceedings of the 14th Eurographics Workshop on Rendering. Goslar: Eurographics Association, 2003: 241-247.
|
| [28] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778.
|
| [29] |
Hu Bingyang, Guo Jie, Chen Yanjun, et al. DeepBRDF: A Deep Representation for Manipulating Measured BRDF[J]. Computer Graphics Forum, 2020, 39(2): 157-166.
|
| [30] |
Zhang R, Isola P, Efros A A, et al. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 586-595.
|