系统仿真学报 ›› 2025, Vol. 37 ›› Issue (7): 1804-1822.doi: 10.16182/j.issn1004731x.joss.25-0600

• 特约论文 • 上一篇    

基于手势行为认知交互的特装车辆指挥模拟训练技术研究

李向阳1,2, 张志利1, 王蕊1, 汪潇1, 迟骋1   

  1. 1.火箭军工程大学,陕西 西安 710025
    2.西北工业大学 航海学院,陕西 西安 710072
  • 收稿日期:2025-06-25 修回日期:2025-06-30 出版日期:2025-07-18 发布日期:2025-07-30
  • 通讯作者: 张志利
  • 第一作者简介:李向阳(1984-),男,副教授,博士,研究方向为协同式人机交互控制与仿真。
  • 基金资助:
    国家自然科学基金(61702524);陕西省自然科学基金(2016JQ6052)

Research on Simulation Training Technology for Special Vehicle Command Based on Gesture Behavior Cognition Interaction

Li Xiangyang1,2, Zhang Zhili1, Wang Rui1, Wang Xiao1, Chi Cheng1   

  1. 1.Rocket Force University of Engineering, Xi'an 710025, China
    2.School of Marine Science and Technology, NPU, Xi'an 710072, China
  • Received:2025-06-25 Revised:2025-06-30 Online:2025-07-18 Published:2025-07-30
  • Contact: Zhang Zhili

摘要:

为克服特装车辆驾驶指挥训练存在的现实短板,提出一种基于手势行为认知与指令交互的模拟训练技术框架。利用体感交互式动捕设备及人体骨骼模型对指挥训练人员的手势动作进行实时动态识别和空间坐标转换,并运用中值滤波法消除其突变数据和随机噪声;采用人体骨骼中心化和归一化方法进行空间坐标的一致化处理,基于指挥手势动作行为模型库创建和手臂骨骼空间姿态角度解算,确定不同指挥手势动作的姿态特征,实现基于动作特征的手势行为认知;通过手势指令关联映射形成智能车辆运动指令信息和控制参数,并通过无线通信协议发送至运动控制模块,经解析和处理后转化为电压、电流信号驱动智能车辆前后运动和左右转向,最终实现不同指挥手势对其运动过程的实时交互控制。经多组指挥训练人员测试验证,所提技术手段和方法途径具有较好的通用性、一致性和准确性,能够为特装车辆驾驶指挥训练提供经济高效的解决途径。

关键词: 手势行为认知, 人机交互, 特装车辆, 指挥模拟训练, 动作特征, 运动控制

Abstract:

To overcome the practical shortcomings in the driving command training of special vehicles, a simulation training technology framework based on gesture behavior cognition and command interaction was proposed. A somatosensory interactive motion capture device and human skeleton model were used to conduct the real-time dynamic recognition and spatial coordinate transformation of the gesture actions of the command training personnel. The median filtering method was applied to eliminate the abrupt data and random noise. The spatial coordinates were processed consistently by using the human skeleton centralization and normalization method. Based on the command gesture action behavior model library and the spatial posture angle calculation of arm skeletons, the posture features of different command gesture actions were determined, and the gesture behavior cognition based on action features was realized. The intelligent vehicle motion command information and control parameters were formed through the association and mapping of gesture commands and sent to the motion control module through the wireless communication protocol. After parsing and processing, they were converted into voltage and current signals to drive the intelligent vehicle to move forward/backward and turn left/right, ultimately achieving real-time interactive control of its motion process by different command gestures. Test verification by multiple groups of command training personnel shows that the proposed technical means and method approaches have good versatility, consistency, and accuracy, which can provide an economical and efficient solution for the driving command training of special vehicles.

Key words: gesture behavior cognition, human-computer interaction, special vehicle, command simulation training, action feature, motion control

中图分类号: