系统仿真学报 ›› 2025, Vol. 37 ›› Issue (5): 1158-1168.doi: 10.16182/j.issn1004731x.joss.24-0040

• 研究论文 • 上一篇    下一篇

面向悬臂结构数字孪生体的灰盒模型构建方法研究

张文嘉, 张和明   

  1. 清华大学 自动化系,北京 100084
  • 收稿日期:2024-01-10 修回日期:2024-03-13 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 张和明
  • 第一作者简介:张文嘉(1996-),女,博士生,研究方向为复杂对象建模仿真。
  • 基金资助:
    国家重点研发计划(2022YFB3402002);国家自然科学基金(U22A2047)

Research on Grey-box Modeling Method of Digital Twins for Cantilever Structure

Zhang Wenjia, Zhang Heming   

  1. Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2024-01-10 Revised:2024-03-13 Online:2025-05-20 Published:2025-05-23
  • Contact: Zhang Heming

摘要:

复杂工业场景中准确且具有高实时性的数字孪生体模型构建面临诸多挑战。传统的仅基于机理或数据的模型构建方法均表现出一定的局限性。基于灰盒建模思想,以悬臂式掘进机中的悬臂结构为对象,提出了一种结合机理模型特征并带有自注意力机制的孪生体模型构建方法。该方法对原始输入进行灰度变换并与物理特征拼接,实现了机理信息的有机融合,不仅增强了孪生体模型的表达力与泛化性,也提高了训练效率;同时引入带有自注意力机制的数据模型结构,增强模型对时序特征的解析能力,进而提高孪生体模型精确度。该方法的有效性已在实验中得到验证,其建模效果相较传统方法有显著提升,为悬臂式掘进机的设计、操作和维护提供了全新的可能性。

关键词: 数字孪生, 复杂系统建模, 灰盒建模, 悬臂结构

Abstract:

The construction of accurate and highly real-time digital twin models in complex industrial setting presents several challenges. Traditional model construction approaches based only on mechanism or data show certain limitations. Therefore, this study is based on the idea of grey-box modeling, taking the cantilever structure within a boom-type roadheader as the object, and proposes a novel modeling approach that combines the characteristics of the mechanism model and introduces a self-attention mechanism. This method performs grayscale transformation on the original input and splices it with physical features to achieve organic fusion of mechanism information, which not only enhances the expressiveness and generalization of the twin model, but also improves training efficiency.Additionally, the introduction of a data model structure incorporating self-attention mechanisms enhances the model's capability to analyze temporal features, consequently augmenting the accuracy of the digital twin model. The effectiveness of this method has been validated through experiments, demonstrating a substantial improvement in modeling performance compared to traditional approaches. This advancement opens new possibilities for the design, operation, and maintenance of boom-type roadheaders.

Key words: digital twins, modeling of complex systems, grey-box modeling, cantilever structure

中图分类号: