1 |
Cadena Cesar, Carlone L, Carrillo Henry, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-perception Age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
|
2 |
薛光辉, 李瑞雪, 张钲昊, 等. 基于3D激光雷达的SLAM算法研究现状与发展趋势[J]. 信息与控制, 2023, 52(1): 18-36.
|
|
Xue Guanghui, Li Ruixue, Zhang Zhenghao, et al. State-of-the-art and Tendency of SLAM Algorithms Based on 3D LiDAR[J]. Information and Control, 2023, 52(1): 18-36.
|
3 |
Zhang J, Singh S. LOAM: Lidar Odometry and Mapping in Real-time[C]//Robotics: Science and Systems, 2014, 2(9): 1-9.
|
4 |
周治国, 曹江微, 邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报, 2021, 41(9): 13-27.
|
|
Zhou Zhiguo, Cao Jiangwei, Di Shunfan. Overview of 3D Lidar SLAM Algorithms[J]. Chinese Journal of Scientific Instrument, 2021, 41(9): 13-27.
|
5 |
Deschaud Jean-Emmanuel. IMLS-SLAM: Scan-to-model Matching Based on 3D Data[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2018: 2480-2485.
|
6 |
Lin Jiarong, Zhang Fu. Loam Livox: A Fast, Robust, High-precision LiDAR Odometry and Mapping Package for LiDARs of Small FoV[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 3126-3131.
|
7 |
Chen Xieyuanli, Milioto Andres, Palazzolo Emanuele, et al. SuMa++: Efficient LiDAR-based Semantic SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2019: 4530-4537.
|
8 |
Dellenbach Pierre, Deschaud Jean-Emmanuel, Jacquet Bastien, et al. CT-ICP: Real-time Elastic LiDAR Odometry with Loop Closure[C]//2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2022: 5580-5586.
|
9 |
Besl P J, Mckay N D. Method for Registration of 3-D Shapes[C]//Sensor Fusion IV: Control Paradigms and Data Structures. Bellingham: SPIE, 1992: 586-606.
|
10 |
Cattaneo Daniele, Vaghi Matteo, Valada Abhinav. LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM[J]. IEEE Transactions on Robotics, 2022, 38(4): 2074-2093.
|
11 |
Segal A, Haehnel D, Thrun S. Generalized-icp[C]//Robotics: Science and Systems, 2009, 2(4): 435.
|
12 |
Koide Kenji, Yokozuka Masashi, Oishi Shuji, et al. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11054-11059.
|
13 |
Wang Jikai, Xu Meng, Foroughi Farzin, et al. FasterGICP: Acceptance-rejection Sampling Based 3D Lidar Odometry[J]. IEEE Robotics and Automation Letters, 2022, 7(1): 255-262.
|
14 |
Wang Han, Wang Chen, Chen Chunlin, et al. F-LOAM: Fast LiDAR Odometry and Mapping[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2021: 4390-4396.
|
15 |
Park Y, Bae S. Keeping Less is More: Point Sparsification for Visual Slam[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 7936-7943.
|
16 |
Shan Tixiao, Englot B. LeGO-LOAM: Lightweight and Ground-optimized Lidar Odometry and Mapping on Variable Terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 4758-4765.
|
17 |
Duan Yifan, Peng Jie, Zhang Yu, et al. PFilter: Building Persistent Maps through Feature Filtering for Fast and Accurate LiDAR-based SLAM[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2022: 11087-11093.
|
18 |
Geiger Andreas, Lenz Philip, Urtasun R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3354-3361.
|
19 |
Wang Han, Wang Chen, Xie Lihua. Intensity-SLAM: Intensity Assisted Localization and Mapping for Large Scale Environment[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1715-1721.
|
20 |
Hess W, Kohler D, Rapp H, et al. Real-time Loop Closure in 2D LIDAR SLAM[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2016: 1271-1278.
|
21 |
Wang Han, Wang Chen, Xie Lihua. Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 2095-2101.
|
22 |
Li Haisong, Tian Bailing, Shen Hongming, et al. An Intensity-augmented LiDAR-inertial SLAM for Solid-state LiDARs in Degenerated Environments[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-10.
|
23 |
Hewitt R A, Marshall J A. Towards Intensity-augmented SLAM with LiDAR and ToF Sensors[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2015: 1956-1961.
|
24 |
Kashani A G, Olsen M J, Parrish C E, et al. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration[J]. Sensors, 2015, 15(11): 28099-28128.
|
25 |
张清宇, 崔丽珍, 杜秀铎, 等. 矿山环境三维激光雷达SLAM算法建图与定位[J]. 测绘通报, 2023(5): 72-77.
|
|
Zhang Qingyu, Cui Lizhen, Du Xiuduo, et al. Mapping and Positioning of 3D LiDAR SLAM Algorithm in Mine Environment[J]. Bulletin of Surveying and Mapping, 2023(5): 72-77.
|
26 |
Yuan Chongjian, Xu Wei, Liu Xiyuan, et al. Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 8518-8525.
|
27 |
Zhang Le, Ponnuthurai Nagaratnam Suganthan. Robust Visual Tracking via Co-trained Kernelized Correlation Filters[J]. Pattern Recognition, 2017, 69: 82-93.
|
28 |
Yin Jie, Li Ang, Li Tao, et al. M2DGR: A Multi-sensor and Multi-scenario SLAM Dataset for Ground Robots[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2266-2273.
|
29 |
Geiger A, Lenz P, Stiller C, et al. Vision Meets Robotics: The KITTI Dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
|
30 |
Zhang Zichao, Scaramuzza Davide. A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 7244-7251.
|
31 |
Yokozuka Masashi, Koide Kenji, Oishi Shuji, et al. LiTAMIN2: Ultra Light LiDAR-based SLAM Using Geometric Approximation Applied with KL-divergence[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 11619-11625.
|