系统仿真学报 ›› 2025, Vol. 37 ›› Issue (2): 392-403.doi: 10.16182/j.issn1004731x.joss.23-1166

• 研究论文 • 上一篇    

基于强度信息特征滤波的激光SLAM算法

李维刚1,2, 邹少峰2, 王永强2, 余楚翔2   

  1. 1.武汉科技大学 冶金自动化与检测技术教育部工程研究中心,湖北 武汉 430081
    2.武汉科技大学 信息科学与工程学院,湖北 武汉 430081
  • 收稿日期:2023-09-19 修回日期:2023-11-04 出版日期:2025-02-14 发布日期:2025-02-10
  • 第一作者简介:李维刚(1977-),男,教授,博士,研究方向为导航、制导与控制。
  • 基金资助:
    国家重点研发计划(2019YFB1310000);湖北省揭榜制科技项目(2020BED003);湖北省重点研发计划(2020BAB098)

Intensity-based Feature Filtering for LiDAR-based SLAM

Li Weigang1,2, Zou Shaofeng2, Wang Yongqiang2, Yu Chuxiang2   

  1. 1.Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
    2.School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2023-09-19 Revised:2023-11-04 Online:2025-02-14 Published:2025-02-10

摘要:

为解决过多的特征点参与点云配准导致算法精度下降和建图效果不佳问题,提出一种基于强度信息特征滤波的激光SLAM算法。根据点云强度信息计算局部地图中特征点附近的强度分布情况,并为局部地图中的每个特征点赋予一个强度分布指标;通过设定强度阈值,滤除在连续帧中强度信息变化较大的无效特征点,筛选出适于将扫描帧与局部地图进行配准的有效特征点。提出一种强度加权代价函数,以获取机器人当前帧在全局地图中更准确的位姿。仿真结果表明:相较PFilter算法,每一扫描帧中的特征点数量平均减少了13.8%,局部地图中的特征点数量平均减少了18.8%,配准精度提高了5.7%。

关键词: 同步定位与建图, 激光雷达, 强度信息, 特征滤波, 点云配准

Abstract:

In order to solve the problem that an excessive influx of feature points into the point cloud registration phase can potentially lead to diminished algorithmic accuracy and suboptimal mapping outcomes, a novel laser SLAM algorithm predicated on the filtering of feature points through the utilization of intensity information is proposed. The intensity distribution near the feature points in the local map is calculated based on the point cloud intensity information, and each feature point within the local map is attributed an intensity distribution index. Through the application of an intensity threshold, feature points that exhibit substantial variations in intensity across successive frames are systematically removed. This process identifies and retains only valid feature points amenable for the registration of scanned frames with the local maps. A novel intensity-weighted cost function is proposed. This function aims to enhance the accuracy of the robot frame's pose estimation within the global map. The simulation results show that it achieves an average reduction of 13.8% in feature point count per scan frame, along with an average decrease of 18.8% in the number of feature points within the local map, enhances registration accuracy by 5.7%.

Key words: simultaneous localization and mapping, LiDAR, intensity information, feature filtering, point cloud registration

中图分类号: