系统仿真学报 ›› 2024, Vol. 36 ›› Issue (9): 2016-2031.doi: 10.16182/j.issn1004731x.joss.24-0101

• 研究论文 • 上一篇    

基于多目标演化优化的SVM对抗仿真测试算法

李飞行1, 邢立宁2, 周宇2   

  1. 1.中国飞行试验研究院,陕西 西安 710089
    2.西安电子科技大学 电子工程学院,陕西 西安 710071
  • 收稿日期:2024-01-25 修回日期:2024-05-19 出版日期:2024-09-15 发布日期:2024-09-30
  • 通讯作者: 周宇
  • 第一作者简介:李飞行(1978-),男,高工,硕士,研究方向为航空智能试验设计与评估。
  • 基金资助:
    陕西省重点科技创新团队项目(2023-CX-TD-07);陕西省重点研发计划(2024GH-ZDXM-48)

Adversarial Simulation Testing Algorithm for SVM Based on Multi-objective Evolutionary Optimization

Li Feixing1, Xing Lining2, Zhou Yu2   

  1. 1.Chinese Flight Test Establishment, Xi'an 710089, China
    2.School of Electronic Engineering, Xidian University, Xi?an 710071, China
  • Received:2024-01-25 Revised:2024-05-19 Online:2024-09-15 Published:2024-09-30
  • Contact: Zhou Yu

摘要:

机器学习通常从数据中挖掘潜在的模式与规则,容易受到数据的影响而产生诸如过拟合、欠拟合等现象,进而影响学习模型的泛化与鲁棒性能。从对抗仿真测试的角度考察SVM可能存在的脆弱不稳定性,采用的对抗仿真策略是通过选择性地污染训练样本标签,模拟攻击SVM分类器使其性能退化,以测试其对训练样本的依赖性。为探究SVM分类器在不同样本组合攻击下的性能损失上限,设计了最小攻击代价-最大攻击成效这一对矛盾目标,构建了SVM仿真测试的多目标优化模型。该模型本质上是一种典型的多目标组合优化问题,可采用适当的多目标演化算法求解目标间的一组非支配解集,揭示分类器在不同样本组合攻击下的分类性能表现。在人工及真实数据集上的仿真对比实验结果表明:所提方法能够一次性生成不同攻击水平下的最优攻击样本组合,取得最大的分类性能损失,更能全面测试SVM分类器性能的稳定性。

关键词: 对抗仿真测试, 污染标签, 支持向量机, 性能损失, 多目标优化, 非支配解集

Abstract:

Machine learning typically mines underlying patterns and rules from data, making it susceptible to phenomena such as overfitting and underfitting, which in turn affects the generalization and robustness of learning models. This paper explores the potential fragility and instability of SVM from the perspective of adversarial simulation testing. The adversarial simulation strategy employed involves selectively contaminating training sample labels to simulate an attack on the SVM classifier, thereby degrading its performance and testing its dependency on training samples. To explore the ceiling of performance degradation of an SVM classifier under the combination attack of different samples, the contradictory objectives of minimum attack cost-maximum attack effectiveness are designed, and a multi-objective optimization model is constructed for SVM simulation tests. This model is fundamentally a typical multi-objective combinatorial optimization problem that can be properly solved using multi-objective evolutionary algorithms to find a set of non-dominated solutions among the objectives, facilitating the investigation of the classifier's stability under the combination attack of different samples. Comparative experimental results on simulated and real datasets show that the proposed method can identify optimal attack sample combination at varying attack levels in a single run, and achieve more severe classification performance degradation, making it more suitable and effective for investigating the stability of classifiers comprehensively.

Key words: adversarial simulation testing, label contamination, SVM, performance degradation, multi-objective optimization, non-dominated solutions

中图分类号: