系统仿真学报 ›› 2025, Vol. 37 ›› Issue (9): 2211-2224.doi: 10.16182/j.issn1004731x.joss.24-0433

• 论文 • 上一篇    

基于随机有限集的CGF机动状态实时生成方法研究

张笑妍1, 李革1, 王鹏1,2   

  1. 1.国防科技大学 系统工程学院,湖南 长沙 410073
    2.湖南省先进技术研究院,湖南 长沙 410205
  • 收稿日期:2024-04-23 修回日期:2024-05-30 出版日期:2025-09-18 发布日期:2025-09-22
  • 通讯作者: 王鹏
  • 第一作者简介:张笑妍(2000-),女,硕士生,研究方向为系统仿真。
  • 基金资助:
    国家自然科学基金(62103425);湖南省自然科学基金(2022JJ40559)

Research on Real-time CGF Maneuvering State Generation Method Based on Random Finite Set

Zhang Xiaoyan1, Li Ge1, Wang Peng1,2   

  1. 1.College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
    2.Hunan Institute of Advanced Technology, Changsha 410205
  • Received:2024-04-23 Revised:2024-05-30 Online:2025-09-18 Published:2025-09-22
  • Contact: Wang Peng

摘要:

随着传感器网络等技术的快速发展,真实物理空间中测量数据的获取变得更加容易。如何利用来自真实战场空间的测量数据来提高CGF仿真的准确性和可信度,是实现虚实结合CGF仿真的关键问题。本研究利用真实测量数据来实时生成CGF模型机动状态数据的方法,以实现真实战场与CGF仿真系统之间的虚实同步和实时映射,为CGF的自助规划决策行为提供环境输入。给出了基于随机有限集的仿真模型和测量模型建模方法,设计了基于PHD/MIB滤波器的CGF机动状态预测校正方法,并通过将SMC、GPU和D-S证据理论等多种技术综合应用,给出所提出的状态生成方法的高效实时解算方法。通过陆上行动仿真的案例验证了所提方法的准确性和有效性。

关键词: 计算机生成兵力, 机动状态生成, 随机有限集, 态势感知, D-S证据理论

Abstract:

With the rapid development of sensor networks and other technologies, the acquisition of measurement data in the real physical space has become easier. How to utilize the measurement data from the real battlefield space to improve the accuracy and credibility of CGF simulation is the key issue to realize the CGF simulation combining virtual and real. The method is studied of using real measurement data to generate CGF model maneuvering state data in real time, in order to realize the virtual-real synchronization and real-time mapping between the real battlefield and CGF simulation system, and to provide environmental inputs for the self-help planning decision-making behavior of CGF.A stochastic finite-set based modeling method for simulation and measurement models is given. A PHD/MIB(probability hypothesis density/multi-instance bernoulli) filter based CGF maneuvering state prediction correction method is designed, and an efficient real-time solver for the proposed state generation method is given by applying various techniques such as SMC, GPU and D-S evidence theory in a comprehensive way. The accuracy and effectiveness of the proposed method is verified by a case study of land operation simulation.

Key words: computer generated force(CGF), maneuver state generation, random finite set(RFS), situational awareness, D-S theory of evidence

中图分类号: