系统仿真学报 ›› 2025, Vol. 37 ›› Issue (9): 2200-2210.doi: 10.16182/j.issn1004731x.joss.24-0429

• 论文 • 上一篇    

深度模糊神经网络的设计和预测

魏呈彪1, 赵涛岩1, 曹江涛1, 李平2   

  1. 1.辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
    2.辽宁科技大学 电子与信息工程学院,辽宁 鞍山 114051
  • 收稿日期:2024-04-23 修回日期:2024-06-23 出版日期:2025-09-18 发布日期:2025-09-22
  • 通讯作者: 赵涛岩
  • 第一作者简介:魏呈彪(1997-),男,硕士生,研究方向为复杂的非线性建模和控制、神经网络和二型模糊系统。
  • 基金资助:
    国家自然科学基金(61673199);辽宁省教育厅科学研究(L2019042);辽宁石油化工大学博士科研启动基金(2019XJJL-017)

Design and Prediction of Deep Fuzzy Neural Network

Wei Chengbiao1, Zhao Taoyan1, Cao Jiangtao1, Li Ping2   

  1. 1.School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China
    2.School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China
  • Received:2024-04-23 Revised:2024-06-23 Online:2025-09-18 Published:2025-09-22
  • Contact: Zhao Taoyan

摘要:

针对深度神经网络可解释性差,处理大数据回归预测问题时对模型的修正没有针对性,提出一种深度模糊神经网络(deep fuzzy neural network, DFNN)。DFNN在结构学习方面采用一种自适应模糊C均值聚类算法(adaptive fuzzy C-means, AFCM),通过计算引入的有效性函数确定模型的结构,即规则数和规则的前件参数;后件参数的辨识使用一种改进的灰狼优化算法(improved grey wolf optimization, IGWO),通过使用指数收敛因子替换GWO中的线性递减策略,并且使用结合动态权重更新的自适应位置更新策略,通过该算法对深度模糊神经网络的后件参数以及自适应模糊均值聚类中的初始化参数进行了优化。将DFNN和相关算法应用于Box-Jenkins燃气炉和短时交通流预测问题中,实验结果证明了提出的模型及算法的可行性。

关键词: 深度模糊神经网络, 自适应聚类, 灰狼算法, Box-Jenkins燃气炉, 交通流预测

Abstract:

A deep fuzzy neural network (DFNN) is proposed to solve the problem that the deep neural network has poor interpretability and the correction of the model is not targeted when dealing with the big data regression prediction problem. The proposed deep fuzzy neural network adopts an adaptive fuzzy C-means (AFCM)clustering algorithm in structural learning. The structure of the model, namely the number of rules and the antecedent parameters of the rules, is determined by calculating the introduced validity function. The identification of consequent parameters uses an improved grey wolf optimization (IGWO) algorithm. By replacing the linear decreasing strategy in the IGWO with an exponential convergence factor, and using an adaptive position update strategy combined with dynamic weight update, the consequent parameters of the deep fuzzy neural network and the initialization parameters in the adaptive fuzzy mean clustering are optimized. The proposed deep fuzzy neural network and related algorithms are applied to Box-Jenkins gas furnace and short-term traffic flow prediction problems. The experimental results prove the feasibility of the proposed model and algorithm.

Key words: deep fuzzy neural network(DFNN), adaptive clustering, grey wolf algorithm, Box-Jenkins gas furnace, traffic flow prediction

中图分类号: