系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1449-1461.doi: 10.16182/j.issn1004731x.joss.24-0096

• 论文 • 上一篇    

基于自适应稀疏宽度学习系统的软测量建模

杜康萍1, 隋璘1, 熊伟丽1,2   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214122
    2.江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2024-01-24 修回日期:2024-03-29 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 熊伟丽
  • 第一作者简介:杜康萍(1999-),女,硕士生,研究方向为复杂工业过程建模。
  • 基金资助:
    国家自然科学基金(61773182);国家重点研发计划(2018YFC1603705-03)

Soft Sensor Modeling Based on Adaptive Sparse Broad Learning System

Du Kangping1, Sui Lin1, Xiong Weili1,2   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
    2.Key Laboratory of Advanced Process Control for Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
  • Received:2024-01-24 Revised:2024-03-29 Online:2025-06-20 Published:2025-06-18
  • Contact: Xiong Weili

摘要:

针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection operator)对网络特征权重进行优化,根据不同变量间的相关性自适应调整惩罚强度,提高模型特征提取能力在增强节点部分引入Dropout机制,利用LASSO求解输出权重,对模型整体进行稀疏优化,剔除过量节点,减少计算过程中的冗余数据。实验结果表明:该方法能有效简化模型结构,提高其预测性能。

关键词: 软测量, 宽度学习系统, 迹LASSO(least absolute shrinkage and selection operator), 正则化, 稀疏模型

Abstract:

To address the challenges posed by nonlinearity and the coupling of multiple features in complex industrial processes, resulting in increased model complexity and decreased performance, a soft sensor modeling method based on adaptive sparse broad learning system is proposed. Building upon the lateral enhancement transmission of features, the trace least absolute shrinkage and selection operator (LASSO) is further used to optimize the feature weights of the network, adaptively adjusting the penalty intensity based on the correlation between different variables to enhance the feature extraction capabilities of the model.The Dropout mechanism is introduced in the enhanced part, and the output weights are utilized by LASSO to sparsely optimize the model as a whole, eliminating excess nodes, and reducing redundant data in the calculation process. Experimental results show that the proposed method can effectively simplify the model structure and improve its prediction performance.

Key words: soft sensor, broad learning system, trace least absolute shrinkage and selection operator (LASSO), regularization, sparse model

中图分类号: