系统仿真学报 ›› 2024, Vol. 36 ›› Issue (9): 2004-2015.doi: 10.16182/j.issn1004731x.joss.24-0199

• 专栏 • 上一篇    

基于云模型和最大均值差异的指标迁移学习

徐丽霞1, 钟季龙1, 伍劭实1, 丁一珊1, 翟小玉1, 陈世钊1, 王鹥喆2, 温雪2, 曾隽芳2, 侯新文2   

  1. 1.军事科学院 国防科技创新研究院,北京 100071
    2.中国科学院 自动化研究所,北京 100190
  • 收稿日期:2024-03-06 修回日期:2024-06-12 出版日期:2024-09-15 发布日期:2024-09-30
  • 通讯作者: 侯新文
  • 第一作者简介:徐丽霞(1991-),女,助理研究员,博士,研究方向为智能测试评估。

Indicator Transfer Learning Based on Cloud Model and Maximum Mean Discrepancy

Xu Lixia1, Zhong Jilong1, Wu Shaoshi1, Ding Yishan1, Zhai Xiaoyu1, Chen Shizhao1, Wang Yizhe2, Wen Xue2, Zeng Juanfang2, Hou Xinwen2   

  1. 1.National Innovation Institute of Defense Technology, Academy of Military Science, Beijing 100071, China
    2.Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-03-06 Revised:2024-06-12 Online:2024-09-15 Published:2024-09-30
  • Contact: Hou Xinwen

摘要:

针对应用实验场景中数据样例稀少的难题,提出基于云模型和最大均值差异的指标迁移学习方法,将典型仿真试验实验场景中的指标计算模型迁移到应用实验场景中,以适应跨平台跨领域仿真评估需求。使用最大均值差异方法将典型仿真实验场景中的指标分布与应用实验场景中的指标分布对齐,从而实现指标迁移;使用云模型基于少量样例对指标分布进行建模和采样,提高了指标迁移学习建模效率。通过典型仿真实验场景到多个应用实验场景的指标模型迁移学习仿真实验结果验证了本文方法的有效性,得到的目标域分布较基于生成对抗网络迁移方法得到的目标域分布更为接近源域,采用Wasserstein距离度量感知、认知、决策、学习能力指标的迁移学习性能平均提升了36.62%。

关键词: 云模型, 最大均值差异, 指标迁移学习, 跨平台跨领域仿真评估, 小数据仿真评估, 指标聚合

Abstract:

In response to the problem of rare data samples in application experiment scenarios, this paper proposes an indicator transfer learning method based on cloud models and Maximum Mean Discrepancy (MMD), which transfers the indicator calculation model from typical simulation experiment scenarios to application experiment scenarios to meet the needs across platform and domain simulation evaluation. Using the maximum mean difference method to align the indicator distribution in the typical simulation experiment scenario to the indicator distribution in the application experiment scenario, thereby achieves indicator transfer, and by using cloud models based on a small number of examples for modeling and sampling, improves the efficiency of indicator transfer learning modeling. The effectiveness of our method has been verified through several indicator model transfer learning experiments from typical simulation experiment scenario to several application experiment scenarios. The distributions of target domain by our method are closer than those by Generative Adversarial Network transfer learning to the distributions of source domain. The transfer learning peformance of perception, cognition, decision and action ability indicators improves averagely 36.62% by Wasserstein distance measure.

Key words: cloud model, maximum mean discrepancy(MMD), indicator transfer learning, simulation assessment across platform and domain, simulation assessment on small data, indicator aggregation

中图分类号: