系统仿真学报 ›› 2023, Vol. 35 ›› Issue (1): 69-81.doi: 10.16182/j.issn1004731x.joss.21-0697
收稿日期:
2021-07-15
修回日期:
2021-09-24
出版日期:
2023-01-30
发布日期:
2023-01-18
通讯作者:
周富得
E-mail:yarongchen@126.com;fdchou@tpts7.seed.net.tw
作者简介:
陈亚绒(1977-),女,副教授,硕士,研究方向为生产调度,制造系统建模与仿真。E-mail:yarongchen@126.com
基金资助:
Yarong Chen(), Shuchen Guan, Chengjun Huang, Lixia Zhu, Chou FuhDer()
Received:
2021-07-15
Revised:
2021-09-24
Online:
2023-01-30
Published:
2023-01-18
Contact:
Chou FuhDer
E-mail:yarongchen@126.com;fdchou@tpts7.seed.net.tw
摘要:
针对工件到达时间与加工时间不确定,且存在紧急工件的并行机开放车间调度问题,以TWC(total weighted completion time)与TWT(total weighted tardiness)为优化目标,设计了一种集成FlexSim仿真模型与NSGA-Ⅱ算法的自适应动态调度方法。该方法以FlexSim模型仿真工件的生成和加工为基础,根据车间实时负荷确定动态调度周期,对紧急工件进行右移重调度,利用NSGA-Ⅱ算法生成双目标优化的调度方案。某晶粒拣选车间生产数据的实验结果表明,相较于利用规则的实时动态调度与固定周期重调度,提出的方法能够在最小化调度偏离度的同时获得满意解。
中图分类号:
陈亚绒, 管舒晨, 黄成军, 朱立夏, 周富得. 基于仿真的双目标并行机开放车间自适应动态调度[J]. 系统仿真学报, 2023, 35(1): 69-81.
Yarong Chen, Shuchen Guan, Chengjun Huang, Lixia Zhu, Chou FuhDer. Simulation-Based Adaptive Dynamic Scheduling for Bi-objective Parallel Multi-processor Open Shop[J]. Journal of System Simulation, 2023, 35(1): 69-81.
表4
独立解密度的实验结果
工件数量 | 运行时间/s | 迭代次数 | 目标值(TWC, TWT) | |
---|---|---|---|---|
10 | 0.45 | 131 | 24 | (856, 35), (874, 30), (886, 27), (895, 22) |
0.50 | 236 | 35 | (836, 26), (847, 19), (862, 18), (888, 17), (890, 15) | |
0.55 | 253 | 52 | (870, 31), (877, 26), (913, 22), (940, 21), (969, 14) | |
0.60 | 296 | 55 | (864, 23), (867, 22), (886, 20) | |
20 | 0.45 | 1 315 | 45 | (2 646, 214), (2 594, 221), (2 573, 227) |
0.50 | 1 441 | 53 | (2 574, 211), (2 583, 210), (2 592, 209) | |
0.55 | 2 230 | 65 | (2 529, 191), (2 517, 208), (2 508, 216), (2 471, 221) | |
0.60 | 2 751 | 80 | (2 566, 198), (2 546, 201), (2 532, 207), (2 507, 210) | |
30 | 0.45 | 1 502 | 46 | (6 302, 841), (6 358, 827), (6 377, 815), (6 384, 804) |
0.50 | 1 648 | 54 | (6 265, 872), (6 362, 820), (6 378, 816) | |
0.55 | 1 680 | 59 | (6 210, 829), (6 271, 818), (6 342, 815), (6 396, 809) | |
0.60 | 1 824 | 68 | (6 337, 856), (6 354, 844), (6 386, 828) |
表5
在线实时调度与混合动态调度方案的实验结果
工件 数量 | 动态调度方案 | 目标值 (TWC, TWT) | 动态调度次数 | 模型运行时间/s | |||
---|---|---|---|---|---|---|---|
10 | 实时动态调度 | WSPT+LALF | (750, 5) | 48 | |||
WSPT+FA | (831, 13) | 52 | |||||
EDD+LALF | (790, 24) | 49 | |||||
EDD+FA | (799, 0) | 52 | |||||
混合动态调度 | 自适应周期+紧急工件驱动 | 316 | 20 | (713, 0) | 3 | 55 | |
固定周期10+紧急工件驱动 | 594 | 51 | (815, 14) | 4 | 60 | ||
固定周期30+紧急工件驱动 | 403 | 27 | (763, 10) | 3 | 79 | ||
20 | 实时动态调度 | WSPT+LALF | (2 854, 212) | 86 | |||
WSPT+FA | (2 965, 242) | 86 | |||||
EDD+LALF | (2 860, 128) | 93 | |||||
EDD+FA | (2 800, 130) | 85 | |||||
混合动态调度 | 自适应周期+紧急工件驱动 | 401 | 70 | (2 890, 118) | 6 | 96 | |
固定周期10+紧急工件驱动 | 954 | 149 | (2 971, 121) | 9 | 97 | ||
固定周期30+紧急工件驱动 | 797 | 75 | (3 035, 172) | 5 | 101 | ||
30 | 实时动态调度 | WSPT+LALF | (5 990, 806) | 130 | |||
WSPT+FA | (6 128, 789) | 133 | |||||
EDD+LALF | (5 850, 430) | 127 | |||||
EDD+FA | (5 829, 428) | 130 | |||||
混合动态调度 | 自适应周期+紧急工件驱动 | 371 | 38 | (6 088, 413) | 7 | 140 | |
固定周期10+紧急工件驱动 | 1407 | 136 | (6 263, 572) | 12 | 143 | ||
固定周期30+紧急工件驱动 | 885 | 67 | (6 361, 776) | 6 | 147 |
表6
不同混合动态调度方案调度期间的偏离度数据
工件数量 | 调度期间 | 自适应周期+ 紧急工件驱动 | 固定周期10+ 紧急工件驱动 | 固定周期30+ 紧急工件驱动 | 工件数量 | 调度期间 | 自适应周期+ 紧急工件驱动 | 固定周期10+ 紧急工件驱动 | 固定周期30+ 紧急工件驱动 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 106 | 8 | 139 | 6 | 139 | 6 | 2 | 27 | 4 | 30 | 4 | 0 | 0 | ||
3 | 210 | 12 | 264 | 21 | 264 | 21 | 3 | 30 | 11 | 25 | 1 | 175 | 21 | ||
4 | 191 | 24 | 4 | 175 | 11 | 19 | 8 | 578 | 19 | ||||||
20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 26 | 3 | 108 | 14 | 129 | 22 | |
2 | 9 | 2 | 39 | 8 | 0 | 0 | 6 | 24 | 2 | 102 | 13 | 3 | 5 | ||
3 | 157 | 17 | 75 | 12 | 110 | 20 | 7 | 89 | 7 | 145 | 14 | ||||
4 | 129 | 21 | 107 | 19 | 249 | 18 | 8 | 15 | 21 | ||||||
5 | 90 | 14 | 128 | 19 | 438 | 37 | 9 | 83 | 12 | ||||||
6 | 16 | 16 | 158 | 21 | 10 | 336 | 19 | ||||||||
7 | 62 | 15 | 11 | 407 | 22 | ||||||||||
8 | 165 | 28 | 12 | 137 | 8 | ||||||||||
9 | 220 | 27 |
1 | 陈亚绒, 黄佩钰, 李沛, 等. 并行多机开放车间调度问题的模型与算法[J]. 中国机械工程, 2018, 29(22): 2666-2673, 2681. |
Chen Yarong, Huang Peiyu, Li Pei, et al. Model and Algorithm of Parallel Multi-processor Open Shop Scheduling Problem[J]. China Mechanical Engineering, 2018, 29(22): 2666-2673, 2681. | |
2 | Naderi B, Fatemi Ghomi S M T, Aminnayeri M, et al. A Study on Open Shop Scheduling to Minimise Total Tardiness[J]. International Journal of Production Research (S0020-7543), 2011, 49(15): 4657-4678. |
3 | Bräsel H, Herms A, Mőrig M, et al. Heuristic Constructive Algorithms for Open Shop Scheduling to Minimize Mean Flow Time[J]. European Journal of Operational Research (S0377-2217), 2008, 189(3): 856-870. |
4 | 王军强, 郭银洲, 崔福东, 等. 基于多样性增强的自适应遗传算法的开放式车间调度优化[J]. 计算机集成制造系统, 2014, 20(10): 2479-2493. |
Wang Junqiang, Guo Yinzhou, Cui Fudong, et al.Diversity Enhancement-based Adaptive Genetic Algorithm for Open-shop Scheduling Problem[J]. Computer Integrated Manufacturing Systems, 2014,20(10): 2479-2493. | |
5 | Abreu L R, Cunha J O, Prata B A, et al. A Genetic Algorithm for Scheduling Open Shops with Sequence-dependent Setup Times[J]. Computers & Operations Research (S0305-0548), 2020, 113: 104793. |
6 | 高亮, 高海兵, 周驰. 基于粒子群优化的开放式车间调度[J]. 机械工程学报, 2006, 42(2): 129-134. |
Gao Liang, Gao Haibing, Zhou Chi. PSO Based Scheduling Algorithm for Open Shop Scheduling Problem[J]. Chinses Journal of Mechanical Engineering, 2006, 42(2): 129-134. | |
7 | Sha D Y, Hsu C-Y. A New Particle Swarm Optimization for the Open Shop Scheduling Problem[J]. Computers & Operations Research (S0305-0548), 2008, 35(10): 3243-3261. |
8 | Jolai F, Goldansaz S M, Zahedi-Anaraki A. Simulated Annealing and Imperialist Competitive Algorithm for Minimising Makespan in An Open Shop[J]. International Journal of Operational Research (S1745-7645), 2013, 17(3): 275-294. |
9 | Panahi H, Tavakkoli-Moghaddam R. Solving a Multi-objective Open Shop Scheduling Problem by A Novel Hybrid Ant Colony Optimization[J]. Expert Systems with Applications (S0957-4174), 2011, 38(3): 2817-2822. |
10 | Uhlmann I R, Frazzon E M. Production Rescheduling Review: Opportunities for Industrial Integration and Practical Applications[J]. Journal of Manufacturing Systems (S0278-6125), 2018, 49: 186-193. |
11 | Ghaleb M, Zolfagharinia H, Taghipour S. Real-time Production Scheduling in the Industry-4.0 Context: Addressing Uncertainties in Job Arrivals and Machine Breakdowns[J]. Computers & Operations Research(S0305-0548), 2020, 123: 105031. |
12 | 张苏雨, 王艳, 纪志成. 基于超启发式遗传规划的动态车间调度方法[J]. 系统仿真学报, 2020, 32(12): 210-222. |
Zhang Suyu, Wang Yan, Ji Zhicheng.Automatic Discovery Method of Dynamic Job Shop Dispatching Rules Based on Hyper-Heuristic Genetic Programming[J]. Journal of System Simulation, 2020, 32(12): 210-222. | |
13 | 唐秋华, 陈世杰, 赵萌, 等. 机器故障下加工车间优化重调度方式预测[J].中国机械工程, 2019, 30(2): 188-195. |
Tang Qiuhua, Chen Shijie, Zhao Meng, et al. Prediction of Optimal Rescheduling Mode under Machine Failures within Job Shops[J]. China Mechanical Engineering, 2019, 30(2): 188-195. | |
14 | 顾泽平, 杨建军, 周勇. 不确定因素扰动下多目标柔性作业车间鲁棒调度方法[J]. 计算机集成制造系统, 2017, 23(1): 66-74. |
Gu Zeping, Yang Jianjun, Zhou Yong. Multi-objective Flexible Job-shop Robust Scheduling Optimization under Disturbance of Uncertainties[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 66-74. | |
15 | 李聪波, 寇阳, 雷焱绯, 等. 基于动态事件的柔性作业车间重调度节能优化[J]. 计算机集成制造系统, 2020, 26(2): 288-299. |
Li Congbo, Kou Yang, Lei Yanfei, et al. Flexible job Shop Rescheduling Optimization Method for Energy-Saving Based on Dynamic Events[J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 288-299. | |
16 | Li X, Zhao P, Du B, et al. Hybrid Artificial Bee Colony Algorithm with A Rescheduling Strategy for Solving Flexible Job Shop Scheduling Problems[J]. Computers & Industrial Engineering (S0360-8352), 2017, 113:10-26. |
17 | 杨小佳, 刘建军, 陈庆新, 等. 变扰动强度下柔性装配作业车间调度性能分析[J]. 计算机集成制造系统, 2021, 27(3): 800-814. |
Yang Xiaojia, Liu Jianjun, Chen Qingxin, et al. Performance Analysis of Flexible Assembly Job Shop Scheduling under Variable Disturbance Intensity[J]. Computer Integrated Manufacturing Systems, 2021, 27(3): 800-814. | |
18 | Rahmani D, Heydari M. Robust and Stable Flow Shop Scheduling with Unexpected Arrivals of New Jobs and Uncertain Processing Times[J]. Journal of Manufacturing Systems (S0278-6125), 2014, 33(1): 84-92. |
19 | 何小妹, 董绍华. 多目标多约束混合流水车间插单重调度问题研究[J]. 工程科学学报, 2019, 4, 307(11): 93-100. |
He Xiaomei, Dong Shaohua. Research on Rush Order Insertion Rescheduling Problem under Hybrid Flow Shop with Multi-objective and Multi-constraint[J]. Chinese Journal of Engineering, 2019, 4, 307(11): 93-100. | |
20 | Liu L. Outsourcing and Rescheduling for A Two-machine Flow Shop with the Disruption of New Arriving Jobs: A Hybrid Variable Neighborhood Search Algorithm[J]. Computers & Industrial Engineering (S0360-8352), 2019, 130: 198-221. |
21 | 王国新, 宁汝新, 王爱民. 基于仿真的生产调度优化技术研究[J]. 计算机集成制造系统, 2007, 13(7): 1419-1427. |
Wang Guoxin, Ning Ruxin, Wang Aimin. Production Optimal Scheduling Technology based on Simulation[J]. Computer Integrated Manufacturing Systems, 2007, 13(7): 1419-1427. | |
22 | Pfeiffer A, Kádár B, Monostori L, et al. Simulation as One of the Core Technologies for Digital Enterprises: Assessment of Hybrid Rescheduling Methods[J]. International Journal of Computer Integrated Manufacturing (S0951-192X), 2008, 21(2): 206-214. |
23 | Korytkowski P, Wiśniewski T, Rymaszewski S. An Evolutionary Simulation-based Optimization Approach for Dispatching Scheduling[J]. Simulation Modelling Practice & Theory (S1569-190X), 2013, 35: 69-85. |
24 | Qiao F, Liu J, Ma Y. Industrial Big-data-driven and CPS-based Adaptive Production Scheduling for Smart Manufacturing[J]. International Journal of Production Research (S0020-7543), 2020, 3: 1-21. |
25 | Gohareh Morady M, Karimi B, Khademian M. A Simulation-optimization Approach for Open-shop Scheduling Problem with Random Process Times[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2014, 70(5-8): 821-831. |
26 | Nasiri M M, Yazdanparast R, Jolai F. A Simulation Optimisation Approach for Real-time Scheduling in an Open Shop Environment Using a Composite Dispatching Rule[J]. International Journal of Computer Integrated Manufacturing (S0951-192X), 2017, 30(12): 1239-1252. |
27 | Moratori P, Petrovic S, Vázquez-Rodríguez J A. Match-up Approaches to a Dynamic Rescheduling Problem[J]. International Journal of Production Research (S0020-7543), 2012, 50(1): 261-276. |
28 | Anand E, Panneerselvam R. A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem[J]. American Journal of Industrial & Business Management (S2164-5167), 2016, 6(6): 774-789. |
29 | 朱传军, 邱文, 张超勇, 等. 多目标柔性作业车间稳健性动态调度研究[J]. 中国机械工程, 2017, 28(2): 173-182. |
Zhu Chuanjun, Qiu Wen, Zhang Chaoyong, et al. Multi-objective Flexible Job Shop Dynamic Scheduling Strategy- Aiming at Scheduling Stability and Robustness[J]. China Mechanical Engineering, 2017, 28(2): 173-182. |
[1] | 陈爱斌, 丁福博, 周国雄, 周波. 基于群体智能的森林火灾蔓延仿真模型[J]. 系统仿真学报, 2022, 34(7): 1439-1448. |
[2] | 赵也践, 王艳红, 张俊, 于洪霞, 田中大. 改进Q学习算法在作业车间调度问题中的应用[J]. 系统仿真学报, 2022, 34(6): 1247-1258. |
[3] | 王红微, 杨鹏. 基于深度强化学习的机场货运业务优化研究[J]. 系统仿真学报, 2022, 34(3): 651-660. |
[4] | 张博远, 龚光红, 王泽, 李妮. 基于深度网络的蓝军装备模型参数生成方法研究[J]. 系统仿真学报, 2022, 34(12): 2629-2638. |
[5] | 陈发堂, 李贺宾, 张志豪, 梅志强. 基于相对残差的LDPC码动态调度译码算法[J]. 系统仿真学报, 2022, 34(09): 1968-1975. |
[6] | 李荣强, 文爱兵, 花斌, 李嘉骏, 姜兵. 航空装备虚拟维修训练仿真模型快速开发技术[J]. 系统仿真学报, 2021, 33(5): 1167-1176. |
[7] | 李笑, 李树, 彭伟鸿, 关婷. 基于工质饱和蒸汽压的排尿助力系统建模仿真[J]. 系统仿真学报, 2021, 33(4): 927-934. |
[8] | 马文欣, 李瑞敏. 检测数据驱动的交通仿真参数标定方法研究[J]. 系统仿真学报, 2021, 33(12): 2808-2819. |
[9] | 梁丰, 张志利, 李向阳, 李亦豪, 王蓓, 龙勇. 力反馈特种车辆驾驶舱半实物仿真模型研究[J]. 系统仿真学报, 2021, 33(12): 2935-2943. |
[10] | 朱峰, 姚益平, 唐文杰, 李进. 复杂系统仿真模型可重用性分析与应用[J]. 系统仿真学报, 2021, 33(10): 2356-2362. |
[11] | 付建林, 张恒志, 张剑, 姜良奎. 自动导引车调度优化研究综述[J]. 系统仿真学报, 2020, 32(9): 1664-1675. |
[12] | 张云荣, 张志利, 李向阳, 王红光, 米文鹏, 孔祥通, 刘朋朋. 基于Agent理论的多无人地面平台协同控制仿真研究[J]. 系统仿真学报, 2020, 32(7): 1211-1219. |
[13] | 胡春生, 许承东, 张鹏飞. 一种高度可配置的模块化仿真系统设计模式[J]. 系统仿真学报, 2020, 32(4): 627-637. |
[14] | 王艳, 丁宇. 动态柔性作业车间优化调度与决策方法[J]. 系统仿真学报, 2020, 32(11): 2073-2083. |
[15] | 田琼, 张竞涛. 打车软件服务下出租车市场模型与仿真[J]. 系统仿真学报, 2019, 31(3): 393-402. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||