系统仿真学报 ›› 2022, Vol. 34 ›› Issue (11): 2359-2367.doi: 10.16182/j.issn1004731x.joss.21-0473

• 仿真建模理论与方法 • 上一篇    下一篇

基于RPPP的无人机自主着舰关键技术研究

康国华(), 赵腾, 付瑶, 徐伟证, 魏建宇, 邱钰桓, 武俊峰   

  1. 南京航空航天大学 航天学院,南京  210016
  • 收稿日期:2021-05-24 修回日期:2021-08-21 出版日期:2022-11-18 发布日期:2022-11-25
  • 作者简介:康国华(1978-),男,博士,教授,研究方向为微小卫星姿轨控、卫星导航与定位。E-mail:kanggh@nuaa.edu.cn
  • 基金资助:
    空间智能控制技术重点实验室稳定支持科研项目(HTKJ2019KL502002);武汉光电国家研究中心开放基金(2019WNLOKF011);江苏省创新创业人才项目(JSSCBS202110181)

Research on Key Technology of UAVs Autonomous Landing Based on Relative Precise Point Position

Guohua Kang(), Teng Zhao, Yao Fu, Weizheng Xu, Jianyu Wei, Yuhuan Qiu, Junfeng Wu   

  1. School of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2021-05-24 Revised:2021-08-21 Online:2022-11-18 Published:2022-11-25

摘要:

在有风浪的复杂海况下,需要自主着舰的无人机与舰船两者相对运动带有极大不确定性,为了提高无人机着舰时相对定位以及控制的精度,确保无人机着舰时的安全性与可靠性,提出一种通过差分对流层误差的相对精密单点定位技术(relative precise point position, RPPP)。该技术仅依靠数据链和载波型卫星定位接收机,消除相同环境下卫星定位相同误差,获得精确相对定位。将比例导引与LQR(linear quadratic regulator)控制器相结合,解决了无人机着舰入射角偏差较大的问题,提高了无人机着舰末段高程方向及入射角度的控制精度。对无人机着舰轨迹进行规划,建立无人机着舰的运动模型,设计无人机着舰横向和纵向的控制律,搭建无人机自主着舰的仿真平台。仿真结果表明,采用上述算法着舰误差控制在0.2 m以下,入射角偏差在10-3量级,可满足无人机着舰要求。

关键词: RPPP, 相对位置, 无人机, 舰船, 比例导引, LQR控制器

Abstract:

In complex sea conditions with wind and waves, the relative motion between unmanned aerial vehicles (UAVs) requiring autonomous landing and ships is highly uncertain. In order to improve the accuracy of relative positioning and control during autonomous landing, and to ensure the safety and reliability of autonomous landing, a relative precise point positioning (RPPP) technique based on differential tropospheric error is proposed. The technology only relies on data link and carrier satellite positioning receiver to eliminate the same error of satellite positioning in the same environment and obtain accurate relative positioning. The combination of proportional navigation and linear quadratic regulator (LQR) controller solves the problem of large deviation of incident angle of UAV landing, and improves the control accuracy of elevation direction and incident angle at the end of UAV landing. The trajectory of UAV landing is planned, the motion model of UAV landing is established, the horizontal and vertical control laws of UAV landing are designed, and the simulation platform of UAV autonomous landing is built. The simulation results show that the landing error of the above algorithm is controlled below 0.2 m, and the incident angle deviation is in the order of 10?3, which can meet the requirements of UAV landed on the ship.

Key words: relative precise point position (RPPP), relatively position, unmanned aerial vehicles (UAV), aircraft carrier, proportional guidance, linear quadratic regulator (LQR) controller

中图分类号: