[1] |
El-Mehalawy N, Awaad M, Eliyan T, et al. Electrical Properties of ZnO/Alumina Nano Composites for High Voltage Transmission Line Insulator[J]. Journal of Materials Science-Materials in Electronics (S0957-4522), 2018, 29(16): 13526-13533.
|
[2] |
Asadpourahmadchali M, Niasati M, Alinejad-Beromi Y. Improving Tower Grounding vs. Insulation Level to Obtain the Desired Back-flashover Rate for HV Transmission Lines[J]. International Journal of Electrical Power and Energy Systems (S0142-0615), 2020, 123(3): 106171.
|
[3] |
胡毅, 刘凯, 吴田, 等. 输电线路运行安全影响因素分析及防治措施[J]. 高电压技术, 2014, 40(11): 3491-3499.
|
|
Hu Yi, Liu Kai, Wu Tian, et al. Analysis of Influential Factors on Operation Safety of Transmission Line and Countermeasures[J]. High Voltage Engineering, 2014, 40(11): 3491-3499
|
[4] |
Nguyen V N, Jenssen R, Roverso D. Automatic Autonomous Vision-based Power Line Inspection: A Review of Current Status and the Potential Role of Deep Learning[J]. International Journal of Electrical Power & Energy Systems (S0142-0615), 2018, 99: 107-120.
|
[5] |
邵瑰玮, 刘壮, 付晶, 等. 架空输电线路无人机巡检技术研究进展[J]. 高电压技术, 2020, 46(1): 14-22.
|
|
Shao Guiwei, Liu Zhuang, Fu Jing, et al. Research Progress in Unmanned Aerial Vehicle Inspection Technology on Overhead Transmission Lines[J]. High Voltage Engineering, 2020, 46(1): 14-22.
|
[6] |
Siddiqui Z A, Park U, Lee S W, et al. Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network[J]. Sensors (S1424-8220), 2018, 18(11): 3837.
|
[7] |
张晶晶, 韩军, 赵亚博, 等. 形状感知的绝缘子识别与缺陷诊断[J]. 中国图象图形学报, 2020, 19(8): 1194-1201.
|
|
Zhang Jingjing, Han Jun, Zhao Yabo, et al. Insulator Recognition and Defects Detection Based on Shape Perceptual[J]. Journal of Image and Graphics, 2020, 19(8): 1194-1201.
|
[8] |
Ge B, Hou C, Liu Y, et al. Anomaly Detection of Power Line Insulator from Aerial Imagery with Attribute Self-supervised Learning[J]. International Journal of Remote Sensing (S0143-1161), 2021(2): 1-21.
|
[9] |
Govindaraju P, Muniraj C. Monitoring and Optimizing the State of Pollution of High Voltage Insulators Using Wireless Sensor Network Based Convolutional Neural Network[J]. Microprocessors and Microsystems (S0141-9331), 2020, 79: 103299.
|
[10] |
Tao X, Zhang D, Wang Z, et al. Detection of Power Line Insulator Defects Using Aerial Images Analyzed with Convolutional Neural Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems (S2168-2216), 2018, 50(4): 1486-1498.
|
[11] |
Ling Z, Qiu R C, Jin Z, et al. An Accurate and Real-time Self-blast Glass Insulator Location Method Based on Faster R-CNN and U-net with Aerial Images[J]. CSEE Journal of Power and Energy Systems (S2096-0042), 2019, 5(4): 474-482.
|
[12] |
Zajac M, Zołna K, Rostamzadeh N, et al. Adversarial Framing for Image and Video Classification[C]//AAAI Conference on Artificial Intelligence. Honolulu, HI: AAAI, 2019, 33(1): 10077-10078.
|
[13] |
Xi P, Tang Z, Fei Y, et al. Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE Press, 2018: 2226-2234.
|
[14] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2014, 3: 2672-2680.
|
[15] |
Jairo V, Chen Y Q, Wang J. FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN) Based Ball-bearing Failure Detection Method[J]. Information Sciences (S1674-733X), 2020, 542: 195-211.
|
[16] |
Wang S, Yang Y, Wu Z, et al. Data Augmentation Using Deep Generative Models for Embedding Based Speaker Recognition[J]. IEEE-ACM Transactions on Audio, Speech, and Language Processing (S2329-9290), 2020, 28: 2598-2609.
|
[17] |
Zhu J Y, Park T, Isola P, et al. Unpaired Image-toimage Translation Using Cycle-consistent Adversarial Networks[C]//IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2242-2251.
|
[18] |
刘哲良, 朱玮, 袁梓洋. 结合全卷积网络与CycleGAN的图像实例风格迁移[J]. 中国图象图形学报, 2019, 24(8): 1283-1291.
|
|
Liu Zheliang, Zhu Wei, Yuan Ziyang. Image Instance Style Transfer Combined with Fully Convolutional Network and CycleGAN[J]. Journal of Image and Graphics, 2019, 24(8): 1283-1291.
|
[19] |
Ma Z, Li J, Wang N, et al. Semantic-related Image Style Transfer with Dual-consistency Loss[J]. Neurocomputing (S0925-2312), 2020, 406: 135-149.
|
[20] |
Xu Z, Wilber M, Fang C, et al. Adversarial Training for Fast Arbitrary Style Transfer[J]. Computers & Graphics- UK (S0097-8493), 2020, 87: 1-11.
|
[21] |
马岽奡, 唐娉, 赵理君, 等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021, 26(3): 487-502.
|
|
Ma Dongao, Tang Ping, Zhao Lijun, et al. Review of Data Augmentation for Image in Deep Learning[J]. Journal of Image and Graphics, 2021, 26(3): 487-502.
|
[22] |
Zhang K, Cao Z, Wu J. Circular Shift: An Effective Data Augmentation Method for Convolutional Neural Network on Image Classification[C]//IEEE International Conference on Image Processing, Electr Network: IEEE Press, 2020: 1676-1680.
|
[23] |
Gupta A, Vedaldi A, Zisserman A. Synthetic Data for Text Localisation in Natural Images[C]//IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE Press, 2016: 2315-2324.
|
[24] |
柴伟佳, 王连明. 卷积神经网络的多字体汉字识别[J]. 中国图象图形学报, 2018, 23(3): 410-417.
|
|
Chai Weijia, Wang Lianming. Recognition of Chinese Characters Using Deep Convolutional Neural Network[J]. Journal of Image and Graphics, 2018, 23(3): 410-417.
|
[25] |
Ekin D, Cubuk B Z, Dandelion M, et al. AutoAugment: Learning Augmentation Policies from Data[EB/OL]. (2018-05-24) [2019-04-11]. .
|
[26] |
翟永杰, 杨旭, 王金娜, 等. 平行视觉框架下深度卷积神经网络可视化分析[J]. 计算机工程与应用, 2020, 56(19): 139-145.
|
|
Zhai Yongjie, Yang Xu, Wang Jinna, et al. Visual Analysis of Deep Convolutional Neural Networks in Parallel Vision[J]. Computer Engineering and Applications, 2020, 56(19): 139-145.
|
[27] |
王坤峰, 鲁越, 王雨桐, 等. 平行图像:图像生成的一个新型理论框架[J]. 模式识别与人工智能, 2017, 30(7): 577-587.
|
|
Wang Kunfeng, Lu Yue, Wang Yutong, et al. Parallel Imaging: A New Theoretical Framework for Image Generation[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 577-587.
|
[28] |
Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for Simplicity: the All Convolutional Net[EB/OL]. (2014-12-21) [2015-4-13]. .
|
[29] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2012, 25: 1097-1105.
|