| 1 |
刘丹, 王运宏. 限制型自适应SUSAN边缘检测算法[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 971-978.
|
|
Liu Dan, Wang Yunhong. Constraint Self-Adaptive SUSAN Algorithm for Edge Detection[J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32(6): 971-978.
|
| 2 |
何炜婷, 曾碧, 陈文轩. 基于轻量级人体姿态估计和图卷积的摔倒实时检测方法[J]. 计算机科学与应用, 2021, 11(4): 783-794.
|
|
He Weiting, Zeng Bi, Chen Wenxuan. Real-Time Fall Detection Based on Light-Weight Human Pose Estimation and Graph Convolution Network[J]. Computer Science and Applications, 2021, 11(4): 783-794.
|
| 3 |
陈淼妙, 续晋华. 基于高分辨率卷积神经网络的场景文本检测模型[J]. 计算机应用与软件, 2020, 37(10): 138-144.
|
|
Chen Miaomiao, Xu Jinhua. Scene Text Detection Model Based on High Resolution Convolutional Neural Networks[J]. Computer Applications and Software, 2020, 37(10): 138-144.
|
| 4 |
邓珍荣, 白善今, 马富欣, 等. 改进YOLO的密集小尺度人脸检测方法[J]. 计算机工程与设计, 2020, 41(3): 874-879.
|
|
Deng Zhenrong, Bai Shanjin, Ma Fuxin, et al. Improved YOLO Dense Small-Scale Face Detection Method [J]. Computer Engineering and Design, 2020, 41(3): 874-879.
|
| 5 |
陈勇, 谢文阳, 刘焕淋, 等. 结合头部和整体信息的多特征融合行人检测[J]. 电子与信息学报, 2022, 44(4): 1453-1460.
|
|
Chen Yong, Xie Wenyang, Liu Huanlin, et al. Multi-feature Fusion Pedestrian Detection Combining Head and Overall Information[J]. Journal of Electronics and Information Technology, 2021, 44(4): 1453-1460.
|
| 6 |
骆子铭, 许书彬, 王杰勋. 一种基于机器学习的TLS恶意流量检测方案[J]. 网络空间安全, 2019, 10(7): 89-94.
|
|
Luo Ziming, Xu Shubin, Wang Jiexun. A Scheme for Identifying Malware Traffic with TLS Data Based on Machine Learning[J]. Cyberspace Security, 2019, 10(7): 89-94.
|
| 7 |
宋羿铭, 解文彬, 周未. 基于机器学习的军事目标检测系统开发研究[J]. 现代计算机, 2020(22): 54-58.
|
|
Song Yiming, Xie Wenbin, Zhou Wei. Development and Research of Military Target Detection System Based on Machine Learning[J]. Modern Computer, 2020(22): 54-58.
|
| 8 |
张富凯, 杨峰, 李策. 基于改进YOLOv3的快速车辆检测方法[J]. 计算机工程与应用, 2019, 55(2): 12-20.
|
|
Zhang Fukai, Yang Feng, Li Ce. Fast Vehicle Detection Method Based on Improved YOLOv3[J]. Computer Engineering and Applications, 2019, 55(2): 12-20.
|
| 9 |
席孝倩, 刘威. 基于目标检测算法的肺结节辅助诊断系统[J]. 计算机与现代化, 2020(11): 1-7.
|
|
Xi Xiaoqian, Liu Wei. Pulmonary Nodule Aided Diagnosis System Based on Target Detection Algorithm[J].Computer and Modernization, 2020(11): 1-7.
|
| 10 |
Cheng X, Shi F, Liu X, et al. A Novel Deep Class-Imbalanced Semisupervised Model for Wind Turbine Blade Icing Detection[J]. IEEE Transactions on Neural Networks and Learning Systems (S2162-237X), 2022, 33(6): 2258-2570.
|
| 11 |
Ahuja S, Panigrahi B K, Dey N, et al. Deep Transfer Learning-Based Automated Detection of COVID-19 from Lung CT Scan Slices[J]. Applied Intelligence (S0924-669X), 2021, 51(1): 571-585.
|
| 12 |
Cheng X, Li G, Han P, et al. Data-Driven Modeling for Transferable Sea State Estimation Between Marine Systems[J]. IEEE Transactions on Intelligent Transportation Systems (S1524-9050), 2022, 23(3):2561-2571.
|
| 13 |
Behera S K, Rath A K, Sethy P K. Maturity Status Classification of Papaya Fruits Based on Machine Learning and Transfer Learning Approach[J]. Information Processing in Agriculture (S2214-3173), 2021, 8(2): 244-250.
|
| 14 |
Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-Based Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2009, 32(9): 1627-1645.
|
| 15 |
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
| 16 |
Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 1-9.
|
| 17 |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2012, 25: 1097-1105.
|
| 18 |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. Advances in Neural Information Processing Systems (S1049-5258), 2015, 28: 91-99.
|
| 19 |
Girshick R. Fast R-CNN[C]// IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448.
|
| 20 |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal Speed and Accuracy of Object Detection[J]. arXiv preprint, arXiv: , 2020.
|
| 21 |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A New Backbone that can Enhance Learning Capability of CNN[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA: IEEE, 2020: 390-391.
|
| 22 |
Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2117-2125.
|
| 23 |
Liu S, Qi L, Qin H, et al. Path Aggregation Network for Instance Segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA: IEEE, 2018: 8759-8768.
|
| 24 |
Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Savarese, Silvio. Long Beach, CA, USA: IEEE, 2019: 658-666.
|
| 25 |
宋闯, 赵佳佳, 王康, 等. 面向智能感知的小样本学习研究综述[J]. 航空学报, 2020, 41(增1): 15-28.
|
|
Song Chuang, Zhao Jiajia, Wang Kang, et al. A Survey of Few Shot Learning Based on Intelligent Perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 15-28.
|
| 26 |
Dai J, Qi H, Xiong Y, et al. Deformable Convolutional Networks[C]// IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 764-773.
|
| 27 |
Zhang P, Zhong Y, Li X. SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications[C]// IEEE/CVF International Conference on Computer Vision Workshops. Seoul, Korea: IEEE, 2019: 37-45.
|
| 28 |
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement[J]. arXiv preprint, arXiv: , 2018.
|
| 29 |
饶威. 基于深度学习的无人机地面小目标算法研究[D]. 沈阳: 沈阳理工大学, 2020.
|
|
Rao Wei. Research on UAV Ground Small Target Algorithm Based on Deep Learning[D]. Shenyang: Shenyang Ligong University, 2020.
|
| 30 |
Zhao Q, Sheng T, Wang Y, et al. M2Det: A Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network[J]. Proceedings of the AAAI Conference on Artificial Intelligence (S2159-5399), 2019, 33: 9259-9266.
|
| 31 |
He K, Zhang X, Ren S, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2015, 37(9): 1904-1916.
|
| 32 |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. arXiv preprint, arXiv: , 2014.
|
| 33 |
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
| 34 |
Bodla N, Singh B, Chellappa R, et al. Soft-NMS--Improving Object Detection with One Line of Code[C]// IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 5561-5569.
|
| 35 |
Chen Q, Wang Y, Yang T, et al. You Only Look One-level Feature[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 13039-13048.
|
| 36 |
Wong A, Famuori M, Shafiee M J, et al. YOLO Nano: A Highly Compact You Only Look Once Convolutional Neural Network for Object Detection[J]. arXiv preprint, arXiv: , 2019.
|
| 37 |
Long X, Deng K, Wang G, et al. PP-YOLO: An Effective and Efficient Implementation of Object Detector[J]. arXiv preprint, arXiv: , 2020.
|
| 38 |
Carion N, Massa F, Synnaeve G, et al. End-to-End Object Detection with Transformers[C]// 16th European Conference on Computer Vision. Glasgow, UK: Springer, Cham, 2020: 213-229.
|
| 39 |
Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO Series in 2021[J]. arXiv preprint, arXiv:, 2021.
|