[1] Liangjun J, Qiang Z, Hang L, et al.Injury Mechanism, Fracture Characteristics and Clinical Treatment of Pilon Fracture with Intact Fibula-A Retrospective Study of 23 Pilon Fractures[J]. J Clin Orthop Trauma (S0976-5662), 2017, 8: 9-15. [2] Woodall, Jr J W, Mc Guire, et al. Evidence for the Treatment of Thoracolumbar Turst Tractures[J]. Current Orthopaedic Practice (S1940-7041), 2012, 23(3): 188-192. [3] Ten J B, Saltzherr T P, Panneman M, et al.Incidence of Spinal Fractures in the Netherlands 1997-2012[J]. J Clin Orthop Trauma (S0976-5662), 2017, 8: 67-70. [4] 庄新明. 骶1双皮质椎弓根钉单点矫正和三维固定在腰骶固定的生物力学研究[D]. 吉林: 吉林大学, 2016. Zhuang X M.The Biomechanical Studies of Mono-point Correction and Three Dimensional Fixation of the Sacralone Bicortical Pedicle Screw on the Lumbosacral Construct[D]. Jilin : Jilin University, 2016. [5] Gelb D, Ludwig S, Karp J, et al.Successful Treatment of Thoracolumbar Fractures with Short-segment Pedicle Instrumentation[J]. Journal of Spinal Disorders & Techniques (S1536-0652), 2010, 23(5): 293-301. [6] 杨程, 徐晓刚, 王建国. 图像配准技术研究[J]. 计算机科学, 2016(增2): 142-144. Yang C, Xu X G, Wang J G.Research on Image Registration Technology[J]. Computer Science, 2016 (S2): 142-144. [7] Pedoia V, Majumdar S, Link T M.Segmentation of Joint and Musculoskeletal Tissue in the Study of Arthritis[J]. Magnetic Resonance Materials in Physics Biology & Medicine (S0968-5243), 2016, 29(2): 207-221. [8] Feng Y, Zhao H, Li X, et al.A Multi-scale 3D Otsu Thresholding Algorithm for Medical Image Segmentation[J]. Digital Signal Processing (S1051-2004), 2017, 60: 186-199. [9] 谢亮. 基于信息熵和改进粒子群算法的医学图像分割方法研究[J]. 半导体光电, 2016, 37(6): 894-898. Xie L.Medical Image Segmentation Method Based on Information Entropy and Improved Particle Swarm Algorithm[J]. Semiconductor Optoelectronics, 2016, 37(6): 894-898. [10] Javed A, Kim Y C, Khoo M, et al.Dynamic 3D MR Visualization and Detection of Upper Airway Obstruction during Sleep using Region Growing Segmentation[J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 2016, 63(2): 431-437. [11] Javadpour A, Mohammadi A.Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth[J]. Journal of Biomedical Physics & Engineering (S2251-7200), 2016, 6(2): 95-108. [12] Gupta D, Anand R S, Tyagi B.A Hybrid Segmentation Method Based On Gaussian Kernel Fuzzy Clustering and Region Based Active Contour Model for Ultrasound Medical Images[J]. Biomedical Signal Processing & Control (S1746-8094), 2015, 16(2): 98-112. [13] 熊晶晶, 周亚丽, 张奇志. 基于各向异性主动轮廓模型的图像分割方法研究[J]. 计算机应用研究, 2017, 35(12): 3484-3487. Xiong J J, Zhou Y L, Zhang Q Z.Image Segmentation Method of Active Contour Model Based on Anisotropic Filtering[J]. Application Research of Computers, 2017, 35(12): 3484-3487. [14] Miao J, Huang T Z, Zhou X, et al.Image Segmentation Based On an Active Contour Model of Partial Image Restoration with Local Cosine Fitting Energy[J]. Information Sciences (S0020-0255), 2018, 447(1): 52-71. [15] Tamezpeña J G, Farber J, González P C, et al.Unsupervised Segmentation And Quantification of anatomical Knee Features: Data From The Osteoarthritis Initiative[J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 2012, 59(4): 1177-1186. [16] Dam E B, Lillholm M, Marques J, et al.Automatic Segmentation of High- And Low-Field Knee MRIs Using Knee Image Quantification with Data From The Osteoarthritis Initiative[J]. Journal of Medical Imaging (S2329-4302), 2015, 2(2): 024001. [17] 温锐, 陈宏文, 张雷, 等. 基于引导滤波的多图谱医学图像分割[J]. 南方医科大学学报, 2015, 35(9): 1263-1267. Wen R, Chen H W, Zhang L, et al.Medical Image Segmentation Based on Guided Filtering and Multi-atlas[J]. Journal of Southern Medical University, 2015, 35(9): 1263-1267. [18] Abdel-Maksoud E, Elmogy M, Al-Awadi R.Brain Tumor Segmentation based on a Hybrid Clustering Technique[J]. Egyptian Informatics Journal (S1110-8665), 2015, 16(1): 71-81. [19] Li Y, Jiao L, Shang R, et al.Dynamic-context Cooperative Quantum-behaved Particle Swarm Optimization based on Multilevel Thresholding applied to Medical Image Segmentation[J]. Information Sciences (S0020-0255), 2015, 294(1): 408-422. [20] Namburu A, Samay S K, Edara S R.Soft Fuzzy Rough Set-based MR Brain Image Segmentation[J]. Applied Soft Computing (S1568-4946), 2017, 54(1): 456-466. [21] 崔宝侠, 田佳, 段勇, 等. 基于图论分割的肺部CT图像的三维重建[J]. 沈阳工业大学学报, 2015, 37(6): 667-672. Cui B X, Tian J, Duan Y, et al.Three-dimensional Reconstruction of Lung CT Images Based on Graph Theory Segmentation[J]. Journal of Shenyang University of Technology, 2015, 37(6): 667-672. [22] 邹瑜, 帅仁俊. 基于改进的SOM神经网络的医学图像分割算法[J]. 计算机工程与设计, 2016, 37(9): 2533-2537, 2581. Zou Y, Shuai R J.Improved Segmentation Algorithm of Medical Images Based on SOM Neural Network[J]. Computer Engineering and Design, 2016, 37(9): 2533-2537, 2581. [23] Harris D, Stephens M.A Combined Comer and Edge Detector[C]. Matthews M M Proceedings of the Fourth Alvey Vision Conference Manchester the university of Sheffield printing Uint, 1998: 147-151. [24] Andre G, Wu K.Providing Visual Information to Validate 2-D to 3-D Registration[J]. Medical Image Analysis (S1361-8415), 2000, 4(4): 357-374. [25] Xu Y, Yu G, Wang Y, et al.A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images[J]. Sensors (S1424-8220), 2016, 16(8): 1325. [26] Aksoy T, Spiclin Z, Pernus F, et al.Monoplane 3D-2D Registration of Cerebral Angiograms based on Multi-objective Stratified Optimization[J]. Physics in Medicine & Biology (S0031-9155), 2017, 62(24): 9377-9394. [27] 王观英, 许新征, 丁世飞. 基于3D-PCNN和互信息的3D-3D医学图像配准方法[J]. 计算机应用, 2017, 37(增1): 215-219. Wang G Y, Xu X Z, Ding S F.3D-3D Medical Image Registration Method Based on 3D-PCNN and Mutual Information[J]. Journal of Computer Applications, 2017, 37(S1): 215-219. [28] Ouadah S, Jacobson M W, Stayman J W, et al.Correction of Patient Motion in Cone-beam CT using 3D-2D Registration[J]. Physics in Medicine & Biology (S0031-9155), 2017, 62(23): 8813-8831. [29] Liang L, Wei M, Szymczak A, et al.Nonrigid Iterative Closest Points for Registration of 3D Biomedical Surfaces[J]. Optics & Lasers in Engineering (S0143-8166), 2018, 100(1): 141-154. [30] Toth D, Panayiotou M, Brost A, et al.3D/2D Registration with Superabundant Vessel Reconstruction for Cardiac Resynchronization Therapy[J]. Medical Image Analysis (S1361-8415), 2017, 42(1): 160-172. [31] 李洪波. 共形几何代数—几何代数的新理论和计算框架[J]. 计算机辅助设计与图形学学报, 2005, 17(11): 2383-2393. Li H B.Conformal Geometric Algebra—A New Framework for Computational Geometry[J]. Journal of Computer-Aided Design and Computer Graphics, 2005, 17(11): 2383-2393. [32] Yuan L, Yu Z, Luo W, et al.Pattern Forced Geophysical Vector Field Segmentation based on Clifford FFT[J]. Computers & Geosciences (S0098-3004), 2013, 60(10): 63-69. [33] Dell’Acqua A, Sarti A, Tubaro S. 3D Motion from Structures of Points, Lines and Planes[J]. Image & Vision Computing (S0262-8856), 2008, 26(4): 529-549. [34] 李洪波. 共形几何代数与运动和形状的刻画[J]. 计算机辅助设计与图形学学报, 2006, 18(7): 895-901. Li H B.Conformal Geometric Algebra for Motion and Shape Description[J]. Journal of Computer-Aided Design and Computer Graphics, 2006, 18(7): 895-903. [35] 曹文明, 刘辉, 徐晨, 等. 基于共形几何代数的3D医学图像配准[J]. 中国科学: 信息科学, 2013, 43(2): 254-274. Cao W M, Liu H, Xu C, et al.3D Medical Image Registration Based on Conformal Geometric Algebra[J]. Science China: Information Sciences, 2013, 43(2): 254-274. [36] 华亮, 黄宇, 丁立军, 等. Clifford代数空间上的三维多模医学图像配准[J]. 光电工程, 2014, 41(1): 65-72. Huang L, Huang Y, Ding L J, et al.Multimodality 3D Medical Image Registration in Clifford Algebra Space[J]. Opto-Electronic Engineering, 2014, 41(1): 65-72. [37] 华亮, 丁立军, 黄宇, 等. Clifford代数几何不变量3D医学图像配准的方法[J]. 计算机科学, 2014, 41(6): 304-308. Huang L, Ding L J, Huang Y, et al.Approach for 3D Medical Image Registration Based 011 Clifford Algebra Geometrical Invariance[J]. Computer Science, 2014, 41(6): 304-308. [38] 华亮, 程天宇, 顾菊平, 等. 基于ROI及Clifford代数相对不变量的3D医学图像配准[J]. 图学学报, 2017, 38(1): 90-96. Huang L, Cheng T Y, Gu J P, et al.3D Medical Image Registration Based on Clifford Relative Invariant and Region of Interest[J]. Journal of Graphics, 2017, 38(1): 90-96. [39] Lu X, Ma H, Zhang B.A Non-rigid Medical Image Registration Method based on Improved Linear Elastic Model[J]. Optik - International Journal for Light and Electron Optics (S0030-4026), 2012, 123(20): 1867-1873. [40] Chang H H, Tsai C Y.Adaptive Registration of Magnetic Resonance Images based on a Viscous Fluid Model[J]. Computer Methods and Programs in Biomedicine (S0169-2607), 2014, 117(2): 80-91. [41] JI Hui-zhong, JIA Da-yu, DONG En-qing.Non-rigid Registrations based on Image Characteristics and Optical Flows[J]. Optics and Precision Engineering (S1004-924X), 2017, 25(9): 2469-2482. [42] Lu X, Zhao Y, Zhang B, et al.A Non-rigid Cardiac Image Registration Method based on an Optical Flow Model[J]. Optik - International Journal for Light and Electron Optics (S0030-4026), 2013, 124(20): 4266-4273. [43] 杜雪莹, 龚伦, 刘兆邦, 等. 基于自适应薄板样条全变分的肺CT/PET图像配准[EB/OL]. (2018-05-28) [2018-09-18]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20180524.1629.002.html. Du X Y, Gong L, Liu Z F, et al. The CT/PET Lung Registration Using Adaptive Thin Plate Spline-based Total Variation Regularization[EB/OL]. (2018-05-28) [2018-09-18]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20180524.1629.002.html. [44] Lapeer R J, Shah S K, Rowland R S.An Optimised Radial basis Function Algorithm for Fast Non-rigid Registration of Medical Images[J]. Computers in Biology & Medicine (S0010-4825), 2010, 40(1): 1-7. [45] Pawar A, Zhang Y, Jia Y, et al.Adaptive FEM-based Nonrigid Image Registration using Truncated Hierarchical B-splines[J]. Computers & Mathematics with Applications (S0898-1221), 2016, 72(8): 2028-2040. |