系统仿真学报 ›› 2025, Vol. 37 ›› Issue (2): 404-412.doi: 10.16182/j.issn1004731x.joss.23-1148

• 研究论文 • 上一篇    

基于改进模拟退火遗传算法的机械臂轨迹优化

徐强1, 徐坚磊2, 胡燕海1, 陈海辉2, 张行2, 邢兆辉2   

  1. 1.宁波大学 机械工程与力学学院,浙江 宁波 315211
    2.宁波航工智能装备有限公司,浙江 宁波 315311
  • 收稿日期:2023-09-17 修回日期:2023-10-23 出版日期:2025-02-14 发布日期:2025-02-10
  • 通讯作者: 胡燕海
  • 第一作者简介:徐强(2000-),男,硕士生,研究方向为机械电子工程。
  • 基金资助:
    国家自然科学基金(51705263);宁波市重点研发计划(2023Z169)

Trajectory Optimization of Robotic Arm Based on Improved Simulated Annealing Genetic Algorithm

Xu Qiang1, Xu Jianlei2, Hu Yanhai1, Chen Haihui2, Zhang Xing2, Xing Zhaohui2   

  1. 1.College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
    2.Ningbo Hanggong Intelligent Equipment Co. , Ltd. , Ningbo 315311, China
  • Received:2023-09-17 Revised:2023-10-23 Online:2025-02-14 Published:2025-02-10
  • Contact: Hu Yanhai

摘要:

为了优化机械臂的工作轨迹,提出了一种改进模拟退火遗传算法。综合考虑机械臂的作业要求及性能特点,利用五次多项式插值的方法在关节空间内规划出一条平滑的运动轨迹。通过罚函数法处理不满足约束条件的个体,动态线性标定法对适应度函数进行重新标定。设置一种交叉概率和变异概率自适应调节机制改进遗传算法,并引入模拟退火算法的退火思想,有效避免了算法陷入局部最优。仿真结果表明:改进模拟退火遗传算法优化后的轨迹相比传统遗传算法有效缩短了机械臂的运动时间,进而提高了机械臂的工作效率。

关键词: 机械臂, 五次多项式插值, 模拟退火遗传算法, 轨迹优化, 罚函数法

Abstract:

To optimize the working trajectory of the robotic arm, a modified simulated annealing genetic algorithm is proposed. Comprehensively considering the operating requirements and performance characteristics of the robotic arm, the five-order polynomial interpolation method is used to plan a smooth motion trajectory in the joint space. The penalty function method is used to handle the individuals that do not meet the constraint conditions,and the fitness function is recalibrated by the dynamic linear calibration method.An adaptive adjustment mechanism for crossover probability and variation probability is set to modify the genetic algorithm. The cooling idea of the simulated annealing algorithm is introduced, which effectively avoids the algorithm falling into locally optimal. The results show that the optimized trajectory of the improved simulated annealing genetic algorithm effectively shortens the movement time of the robotic arm compared with the traditional genetic algorithm, and then improves the working efficiency of the robotic arm.

Key words: robotic arm, five-degree polynomial interpolation, simulated annealing genetic algorithms, trajectory optimization, penalty function method

中图分类号: