系统仿真学报 ›› 2024, Vol. 36 ›› Issue (12): 2782-2796.doi: 10.16182/j.issn1004731x.joss.24-FZ0740E

• 论文 • 上一篇    

基于聚类的疫情物资投放点选址方法研究

周雅琼, 陈俊琪, 李惟时, 邱思航, 鞠儒生   

  1. 国防科技大学 系统工程学院,湖南 长沙 410073
  • 收稿日期:2024-07-10 修回日期:2024-09-18 出版日期:2024-12-20 发布日期:2024-12-20
  • 通讯作者: 鞠儒生

A Clustering-based Location Allocation Method for Delivery Sites under Epidemic Situations

Zhou Yaqiong, Chen Junqi, Li Weishi, Qiu Sihang, Ju Rusheng   

  1. College of System Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2024-07-10 Revised:2024-09-18 Online:2024-12-20 Published:2024-12-20
  • Contact: Ju Rusheng
  • About author:Zhou Yaqiong(2000-), female, master student, research area: crowd computing.
  • Supported by:
    National Natural Science Foundation of China(62202477)

摘要:

为解决常用的智能优化算法在求解选址问题时,在有效性、效率和稳定性方面表现不佳的问题,提出了一种新的在隔离期间物资投放点的选择方法。在确定优化目标和约束条件后,根据所收集的数据建立了相关数学模型,并采用传统的智能优化算法得到Pareto前沿解;基于这些Pareto前沿解的特点,提出了一种改进版聚类算法,并利用长春市的相关数据进行了仿真实验。结果表明:所提算法在有效性、效率和稳定性方面均优于传统的智能优化算法,与基准算法相比在时间成本和人力成本上分别降低了约12%和8%。

关键词: 选址问题, 聚类算法, 智能优化算法, Pareto 前沿

Abstract:

To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness, efficiency, and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines. After establishing the optimization objectives and constraints, we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions. Building on the characteristics of these Pareto front solutions, we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City. The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness, efficiency, and stability, achieving reductions of approximately 12% and 8% in time and labor costs, respectively, compared to the baseline algorithm.

Key words: location problem, clustering algorithm, intelligent optimization algorithm, Pareto front

中图分类号: