系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2043-2060.doi: 10.16182/j.issn1004731x.joss.24-0315
• 论文 • 上一篇
史宣莉1, 陈伟能1, 宋安1, 赵甜芳2
收稿日期:
2024-03-31
修回日期:
2024-06-05
出版日期:
2025-08-20
发布日期:
2025-08-26
通讯作者:
陈伟能
第一作者简介:
史宣莉(2000-),女,博士生,研究方向为复杂网络建模与传播、群体智能等。
基金资助:
Shi Xuanli1, Chen Weineng1, Song An1, Zhao Tianfang2
Received:
2024-03-31
Revised:
2024-06-05
Online:
2025-08-20
Published:
2025-08-26
Contact:
Chen Weineng
摘要:
基于分而治之的思想,提出了多粒度协同演化的病毒传播控制资源分配方法(multi-granularity cooperative coevolution,MGCC)。根据人类社交网络结构特征,将网络按照不同分解粒度分解为不同规模的子网络;设计了一种基于贡献度的分解粒度选择策略,用历史档案记录不同分解粒度对问题优化的贡献度,并根据优化状态选择合适分解粒度;设计了基于投影的约束修复策略,保证解的可行性。结果表明:MGCC算法可以将复杂的社交网络结构分解,并结合不同演化算子协同解决资源分配问题,可以提高演化算子对解决病毒传播控制资源分配问题的有效性。
中图分类号:
史宣莉,陈伟能,宋安等 . 多粒度协同演化的病毒传播控制资源分配方法[J]. 系统仿真学报, 2025, 37(8): 2043-2060.
Shi Xuanli,Chen Weineng,Song An,et al . Resource Allocation Method for Virus Spreading Control Based on Multi-granularity Cooperative Coevolution[J]. Journal of System Simulation, 2025, 37(8): 2043-2060.
表2
MGCC与CSO算法和DE算法对比
网络 | 指标 | MGCC_CSO | CSO | MGCC_DE | DE |
---|---|---|---|---|---|
Net_01 | mean | 0.487 0 | 0.526 0 | 0.462 3 | 0.577 9 |
std | 1.73×10-2 | 3.01×10-2 | 2.47×10-2 | 2.97×10-2 | |
p-value | 1.19×10-6(+) | 3.34×10-11(+) | |||
Net_02 | mean | 0.449 8 | 0.490 0 | 0.416 4 | 0.524 4 |
std | 2.27×10-2 | 2.35×10-2 | 2.46×10-2 | 2.95×10-2 | |
p-value | 1.36×10-7(+) | 3.34×10-11(+) | |||
Net_03 | mean | 0.474 8 | 0.516 7 | 0.453 9 | 0.556 7 |
std | 2.63×10-2 | 2.87×10-2 | 3.33×10-2 | 4.27×10-2 | |
p-value | 4.12×10-6(+) | 1.96×10-10(+) | |||
Net_04 | mean | 0.473 1 | 0.511 4 | 0.439 9 | 0.562 6 |
std | 2.11×10-2 | 2.43×10-2 | 3.16×10-2 | 3.12×10-2 | |
p-value | 3.81×10-7(+) | 4.08×10-11(+) | |||
Net_05 | mean | 0.466 8 | 0.512 2 | 0.452 0 | 0.561 0 |
std | 1.97×10-2 | 2.90×10-2 | 2.50×10-2 | 4.03×10-2 | |
p-value | 9.83×10-8(+) | 9.92×10-11(+) | |||
Net_06 | mean | 0.472 5 | 0.492 4 | 0.428 5 | 0.537 7 |
std | 2.54×10-2 | 2.71×10-2 | 2.45×10-2 | 2.85×10-2 | |
p-value | 7.62×10-3(+) | 3.34×10-11(+) | |||
Net_07 | mean | 0.518 3 | 0.549 3 | 0.491 0 | 0.600 2 |
std | 2.23×10-2 | 2.05×10-2 | 2.65×10-2 | 3.39×10-2 | |
p-value | 2.88×10-6(+) | 4.50×10-11(+) | |||
Net_08 | mean | 0.480 5 | 0.529 4 | 0.447 6 | 0.580 5 |
std | 2.42×10-2 | 3.22×10-2 | 2.88×10-2 | 4.02×10-2 | |
p-value | 4.11×10-7(+) | 3.34×10-11(+) | |||
Net_09 | mean | 0.535 6 | 0.573 0 | 0.489 3 | 0.630 4 |
std | 2.14×10-2 | 3.12×10-2 | 2.92×10-2 | 3.73×10-2 | |
p-value | 2.49×10-6(+) | 3.34×10-11(+) | |||
Net_10 | mean | 0.479 5 | 0.524 2 | 0.450 5 | 0.568 7 |
std | 2.77×10-2 | 3.01×10-2 | 2.31×10-2 | 3.52×10-2 | |
p-value | 4.80×10-7(+) | 3.34×10-11(+) |
表3
MGCC不同粒度对比实验
网络 | 指标 | MGCC_CSO | CSO_g2 | CSO_g3 | CSO_g4 | MGCC_DE | DE_g2 | DE_g3 | DE_g4 |
---|---|---|---|---|---|---|---|---|---|
Net_01 | mean | 0.487 0 | 0.499 8 | 0.504 2 | 0.496 8 | 0.462 3 | 0.518 9 | 0.485 2 | 0.463 1 |
std | 1.73×10-2 | 2.28×10-2 | 2.33×10-2 | 2.26×10-2 | 2.47×10-2 | 2.50×10-2 | 3.40×10-2 | 2.52×10-2 | |
p-value | — | 4.68×10-2(+) | 3.67×10-3(+) | 1.26×10-1(≈) | — | 2.67×10-9(+) | 7.96×10-3(+) | 9.00×10-1(≈) | |
Net_02 | mean | 0.449 8 | 0.473 6 | 0.466 7 | 0.477 5 | 0.416 4 | 0.481 7 | 0.464 7 | 0.438 1 |
std | 2.27×10-2 | 2.86×10-2 | 2.48×10-2 | 2.61×10-2 | 2.46×10-2 | 3.26×10-2 | 3.48×10-2 | 2.51×10-2 | |
p-value | — | 9.52×10-4(+) | 1.17×10-2(+) | 1.25×10-4(+) | — | 3.82×10-9(+) | 8.20×10-7(+) | 7.70×10-4(+) | |
Net_03 | mean | 0.474 8 | 0.489 7 | 0.496 1 | 0.491 5 | 0.453 9 | 0.511 6 | 0.473 2 | 0.463 7 |
std | 2.63×10-2 | 1.97×10-2 | 2.19×10-2 | 2.72×10-2 | 3.33×10-2 | 2.74×10-2 | 2.83×10-2 | 3.06×10-2 | |
p-value | — | 1.76×10-2(+) | 2.16×10-3(+) | 2.51×10-2(+) | — | 4.69×10-8(+) | 3.39×10-2(+) | 3.11×10-1(+) | |
Net_04 | mean | 0.473 1 | 0.500 3 | 0.493 3 | 0.500 6 | 0.439 9 | 0.504 3 | 0.483 8 | 0.458 3 |
std | 2.11×10-2 | 2.64×10-2 | 2.63×10-2 | 2.58×10-2 | 3.16×10-2 | 2.81×10-2 | 3.18×10-2 | 2.77×10-2 | |
p-value | — | 1.17×10-4(+) | 3.50×10-3(+) | 9.79×10-5(+) | — | 7.77×10-9(+) | 6.28×10-6(+) | 1.99×10-2(+) | |
Net_05 | mean | 0.466 8 | 0.492 7 | 0.492 1 | 0.493 8 | 0.452 0 | 0.507 1 | 0.490 2 | 0.466 1 |
std | 1.97×10-2 | 2.58×10-2 | 1.96×10-2 | 2.81×10-2 | 2.50×10-2 | 3.31×10-2 | 1.91×10-2 | 2.23×10-2 | |
p-value | — | 1.41×10-4(+) | 2.77×10-5(+) | 2.68×10-4(+) | — | 1.60×10-7(+) | 1.16×10-7(+) | 1.38×10-2(+) | |
Net_06 | mean | 0.472 5 | 0.479 9 | 0.477 4 | 0.477 3 | 0.428 5 | 0.483 5 | 0.463 0 | 0.440 1 |
std | 2.54×10-2 | 3.06×10-2 | 2.19×10-2 | 2.28×10-2 | 2.45×10-2 | 2.70×10-2 | 2.78×10-2 | 2.93×10-2 | |
p-value | — | 2.46×10-1(≈) | 6.31×10-1(≈) | 6.10×10-1(≈) | — | 8.48×10-9(+) | 1.53×10-5(+) | 1.54×10-1(≈) | |
Net_07 | mean | 0.518 3 | 0.530 4 | 0.542 9 | 0.526 7 | 0.491 0 | 0.543 1 | 0.532 5 | 0.497 3 |
std | 2.23×10-2 | 2.34×10-2 | 2.54×10-2 | 2.45×10-2 | 2.65×10-2 | 3.28×10-2 | 2.50×10-2 | 2.95×10-2 | |
p-value | — | 1.54×10-1(≈) | 5.56×10-4(+) | 3.71×10-1(≈) | — | 2.38×10-7(+) | 1.39×10-6(+) | 2.84×10-1(≈) | |
Net_08 | mean | 0.480 5 | 0.497 3 | 0.506 8 | 0.503 8 | 0.447 6 | 0.508 0 | 0.501 3 | 0.463 1 |
std | 2.42×10-2 | 2.69×10-2 | 2.75×10-2 | 2.71×10-2 | 2.88×10-2 | 3.29×10-2 | 2.52×10-2 | 2.80×10-2 | |
p-value | — | 3.39×10-2(+) | 1.06×10-3(+) | 1.52×10-3(+) | — | 5.09×10-8(+) | 1.70×10-8(+) | 9.05×10-2(≈) | |
Net_09 | mean | 0.535 6 | 0.553 8 | 0.553 8 | 0.548 8 | 0.489 3 | 0.558 3 | 0.543 9 | 0.517 3 |
std | 2.14×10-2 | 3.02×10-2 | 2.59×10-2 | 2.70×10-2 | 2.92×10-2 | 3.90×10-2 | 3.27×10-2 | 3.10×10-2 | |
p-value | — | 1.17×10-2(+) | 1.50×10-2(+) | 7.98×10-2(≈) | — | 1.31×10-8(+) | 2.38×10-7(+) | 1.17×10-3(+) | |
Net_10 | mean | 0.479 5 | 0.500 1 | 0.515 0 | 0.505 4 | 0.450 5 | 0.513 9 | 0.503 3 | 0.476 0 |
std | 2.77×10-2 | 2.48×10-2 | 2.74×10-2 | 2.28×10-2 | 2.31×10-2 | 2.83×10-2 | 3.36×10-2 | 2.67×10-2 | |
p-value | — | 4.03×10-3(+) | 2.13×10-5(+) | 7.66×10-5(+) | — | 8.89×10-10(+) | 7.09×10-8(+) | 3.99×10-4(+) | |
w/l/d | — | 8/0/2 | 9/0/1 | 6/0/4 | — | 10/0/0 | 10/0/0 | 6/0/4 |
表4
MGCC不同修复策略对比实验
网络 | 指标 | MGCC_ CSO | MGCC_ CSO_2 | MGCC_ DE | MGCC_ DE_2 | 网络 | 指标 | MGCC_ CSO | MGCC_ CSO_2 | MGCC_ DE | MGCC_ DE_2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Net_01 | mean | 0.487 5 | 0.510 8 | 0.462 4 | 0.543 2 | Net_06 | mean | 0.472 9 | 0.491 9 | 0.428 7 | 0.518 2 |
std | 1.71×10-2 | 3.06×10-2 | 2.47×10-2 | 3.21×10-2 | std | 2.56×10-2 | 2.03×10-2 | 2.45×10-2 | 3.24×10-2 | ||
p-value | 2.24×10-7(+) | 8.57×10-72(+) | p-value | 8.80×10-6(+) | 1.70×10-76(+) | ||||||
Net_02 | mean | 0.450 0 | 0.487 6 | 0.416 5 | 0.511 2 | Net_07 | mean | 0.518 7 | 0.540 4 | 0.491 1 | 0.560 6 |
std | 2.28×10-2 | 2.61×10-2 | 2.46×10-2 | 2.97×10-2 | std | 2.23×10-2 | 2.88×10-2 | 2.65×10-2 | 3.12×10-2 | ||
p-value | 1.58×10-14(+) | 1.25×10-82(+) | p-value | 5.93×10-7(+) | 8.37×10-67(+) | ||||||
Net_03 | mean | 0.474 9 | 0.512 3 | 0.454 1 | 0.536 3 | Net_08 | mean | 0.480 8 | 0.499 7 | 0.447 7 | 0.514 0 |
std | 2.64×10-2 | 2.50×10-2 | 3.33×10-2 | 2.98×10-2 | std | 2.41×10-2 | 2.17×10-2 | 2.87×10-2 | 3.10×10-2 | ||
p-value | 5.16×10-12(+) | 5.86×10-71(+) | p-value | 9.89×10-6(+) | 9.51×10-62(+) | ||||||
Net_04 | mean | 0.473 4 | 0.503 8 | 0.440 0 | 0.530 5 | Net_09 | mean | 0.536 0 | 0.573 0 | 0.489 4 | 0.591 7 |
std | 2.12×10-2 | 2.77×10-2 | 3.15×10-2 | 2.19×10-2 | std | 2.12×10-2 | 3.36×10-2 | 2.92×10-2 | 3.54×10-2 | ||
p-value | 7.89×10-11(+) | 8.07×10-78(+) | p-value | 3.84×10-11(+) | 6.29×10-77(+) | ||||||
Net_05 | mean | 0.467 2 | 0.506 1 | 0.452 1 | 0.537 0 | Net_10 | mean | 0.479 9 | 0.515 1 | 0.450 6 | 0.539 7 |
std | 1.97×10-2 | 2.76×10-2 | 2.50×10-2 | 2.75×10-2 | std | 2.78×10-2 | 2.66×10-2 | 2.31×10-2 | 3.42×10-2 | ||
p-value | 4.18×10-16(+) | 3.29×10-76(+) | p-value | 1.17×10-10(+) | 2.69×10-75(+) |
表5
MGCC不同修复策略对比实验
算法 | congress-Twitter | US_Airport_top500 | ||||
---|---|---|---|---|---|---|
mean | std | p-value | mean | std | p-value | |
MGCC_CSO | 3.812 8 | 0.094 1 | — | 1.624 3 | 0.149 6 | — |
CSO | 3.872 6 | 0.139 3 | 1.54×10-16(+) | 1.695 6 | 0.079 3 | 5.61×10-33(+) |
CSO_g2 | 3.846 9 | 0.102 7 | 4.07×10-5(+) | 1.641 8 | 0.188 2 | 6.48×10-9(+) |
CSO_g3 | 3.892 5 | 0.175 8 | 1.02×10-18(+) | 1.690 9 | 0.220 0 | 1.88×10-28(+) |
CSO_g4 | 3.834 7 | 0.158 2 | 1.23×10-2(+) | 1.666 5 | 0.174 1 | 4.51×10-16(+) |
CSO_g5 | 3.908 8 | 0.132 4 | 7.55×10-21(+) | 1.723 5 | 0.108 1 | 3.38×10-42(+) |
CSO_g10 | 3.907 6 | 0.151 6 | 3.15×10-20(+) | 1.716 2 | 0.214 8 | 9.01×10-44(+) |
CSO_g15 | 3.889 9 | 0.134 5 | 2.65×10-17(+) | 1.660 7 | 0.151 7 | 2.47×10-17(+) |
CSO_g20 | 3.888 2 | 0.157 3 | 3.81×10-14(+) | 1.657 0 | 0.170 7 | 4.07×10-11(+) |
w/l/d | 8/0/0 | 8/0/0 | ||||
MGCC_DE | 3.448 2 | 0.112 1 | — | 1.582 7 | 0.084 8 | — |
DE | 3.493 6 | 0.110 3 | 1.03×10-4(+) | 1.678 9 | 0.100 5 | 4.12×10-27(+) |
DE_g2 | 3.396 5 | 0.111 9 | 1.81×10-6(-) | 1.608 5 | 0.161 5 | 1.41×10-5(+) |
DE_g3 | 3.525 8 | 0.093 2 | 4.51×10-5(+) | 1.600 1 | 0.146 5 | 0.000 462(+) |
DE_g4 | 3.517 3 | 0.159 0 | 3.45×10-4(+) | 1.588 4 | 0.115 2 | 0.647 967(≈) |
DE_g5 | 3.401 0 | 0.126 2 | 5.13×10-3(+) | 1.618 3 | 0.138 1 | 1.32×10-8(+) |
DE_g10 | 3.477 5 | 0.230 0 | 2.32×10-1(+) | 1.647 1 | 0.109 2 | 5.71×10-14(+) |
DE_g15 | 3.420 4 | 0.130 9 | 3.67×10-3(-) | 1.535 7 | 0.133 2 | 1.39×10-8(-) |
DE_g20 | 3.535 1 | 0.219 1 | 2.16×10-8(+) | 1.660 8 | 0.142 4 | 1.19×10-23(+) |
w/l/d | 6/2/0 | 6/1/1 |
[1] | Lakshmi Priyadarsini S, Suresh M, Huisingh D. What Can We Learn from Previous Pandemics to Reduce the Frequency of Emerging Infectious Diseases Like COVID-19?[J]. Global Transitions, 2020, 2: 202-220. |
[2] | 朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9): 2108-2120. |
Zhu Bingyu, Liu Zhen, Zhang Jingxiang. COVID-19 Detection Algorithm Combining Grad-CAM and Convolutional Neural Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120. | |
[3] | Feng Shuo, Feng Zebang, Ling Chen, et al. Prediction of the COVID-19 Epidemic Trends Based on SEIR and AI Models[J]. PLOS One, 2021, 16(1): e0245101. |
[4] | Muhammad Naveed Aman, Javaid Uzair, Sikdar Biplab. IoT-proctor: A Secure and Lightweight Device Patching Framework for Mitigating Malware Spread in IoT Networks[J]. IEEE Systems Journal, 2022, 16(3): 3468-3479. |
[5] | Doshi Ronak, Ramesh Ajay, Rao Shrisha. Modeling Influencer Marketing Campaigns in Social Networks[J]. IEEE Transactions on Computational Social Systems, 2023, 10(1): 322-334. |
[6] | Zhao Tianfang, Chen Weineng, Liew A W C, et al. A Binary Particle Swarm Optimizer with Priority Planning and Hierarchical Learning for Networked Epidemic Control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 5090-5104. |
[7] | Preciado V M, Zargham M, Enyioha C, et al. Optimal Resource Allocation for Network Protection Against Spreading Processes[J]. IEEE Transactions on Control of Network Systems, 2014, 1(1): 99-108. |
[8] | Agrawal A, Diamond S, Boyd S. Disciplined Geometric Programming[J]. Optimization Letters, 2019, 13(5): 961-976. |
[9] | Deng Zhenhua, Xiaohong Nian, Hu Chen. Distributed Algorithm Design for Nonsmooth Resource Allocation Problems[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 3208-3217. |
[10] | Wang Xiaoxuan, Yang Shaofu, Guo Zhenyuan, et al. A Distributed Dynamical System for Optimal Resource Allocation Over State-dependent Networks[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2940-2951. |
[11] | 周涛, 傅忠谦, 牛永伟, 等. 复杂网络上传播动力学研究综述[J]. 自然科学进展, 2005, 15(5): 513-518. |
[12] | 樊长佳, 杜炎秋, 梁笛, 等. COVID-19期间上海市应急医疗资源配置建模与仿真[J]. 系统仿真学报, 2022, 34(1): 93-103. |
Fan Changjia, Du Yanqiu, Liang Di, et al. Modeling and Simulation of Emergency Medical Resources Allocation in Shanghai during COVID-19[J]. Journal of System Simulation, 2022, 34(1): 93-103. | |
[13] | Sun Lu, Wan Liangtian, Liu Kaihui, et al. Cooperative-evolution-based WPT Resource Allocation for Large-scale Cognitive Industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5401-5411. |
[14] | Zhao Tianfang, Chen Weineng, Kwong S, et al. Evolutionary Divide-and-conquer Algorithm for Virus Spreading Control Over Networks[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3752-3766. |
[15] | Cheng Ran, Jin Yaochu. A Competitive Swarm Optimizer for Large Scale Optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191-204. |
[16] | Opara Karol R, Arabas Jarosław. Differential Evolution: A Survey of Theoretical Analyses[J]. Swarm and Evolutionary Computation, 2019, 44: 546-558. |
[17] | 宋玉蓉, 鲍裕霖, 李汝琦. 意识扩散和SEIR病毒的双层网络传播模型[J]. 系统仿真学报, 2022, 34(11): 2437-2447. |
Song Yurong, Bao Yulin, Li Ruqi. A Two-layer Network Propagation Model of Awareness Diffusion and SEIR Epidemic[J]. Journal of System Simulation, 2022, 34(11): 2437-2447. | |
[18] | 王磊, 孙晋海, 李拓键. 基于SIS模型的锻炼获益感知传播建模与仿真[J]. 系统仿真学报, 2022, 34(12): 2566-2574. |
Wang Lei, Sun Jinhai, Li Tuojian. SIS-based Modeling and Simulation Analysis on Exercise Benefit Perception Transmission[J]. Journal of System Simulation, 2022, 34(12): 2566-2574. | |
[19] | Luo Wuqiong, Wee Peng Tay, Leng Mei. How to Identify an Infection Source with Limited Observations[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(4): 586-597. |
[20] | She Baike, Liu Ji, Sundaram S, et al. On a Networked SIS Epidemic Model with Cooperative and Antagonistic Opinion Dynamics[J]. IEEE Transactions on Control of Network Systems, 2022, 9(3): 1154-1165. |
[21] | He Zaiyin, Abbes Abderrahmane, Jahanshahi Hadi, et al. Fractional-order Discrete-time SIR Epidemic Model with Vaccination: Chaos and Complexity[J]. Mathematics, 2022, 10(2): 165. |
[22] | Yang Zifeng, Zeng Zhiqi, Wang Ke, et al. Modified SEIR and AI Prediction of the Epidemics Trend of COVID-19 in China Under Public Health Interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174. |
[23] | Zhou Xueyong, Cui Jingan. Analysis of Stability and Bifurcation for an SEIV Epidemic Model with Vaccination and Nonlinear Incidence Rate[J]. Nonlinear Dynamics, 2011, 63(4): 639-653. |
[24] | Potter M A, Kenneth A de Jong. Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents[J]. Evolutionary Computation, 2000, 8(1): 1-29. |
[25] | Xu Biao, Gong Dunwei, Zhang Yong, et al. Cooperative Co-evolutionary Algorithm for Multi-objective Optimization Problems with Changing Decision Variables[J]. Information Sciences, 2022, 607: 278-296. |
[26] | Yang Qiang, Chen Weineng, Gu Tianlong, et al. A Distributed Swarm Optimizer with Adaptive Communication for Large-scale Optimization[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 3393-3408. |
[27] | Mohammad Nabi Omidvar, Li Xiaodong, Yao Xin. Cooperative Co-evolution with Delta Grouping for Large Scale Non-separable Function Optimization[C]//IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2010: 1-8. |
[28] | Yang Zhenyu, Tang Ke, Yao Xin. Multilevel Cooperative Coevolution for Large Scale Optimization[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Piscataway: IEEE, 2008: 1663-1670. |
[29] | Song An, Yang Qiang, Chen Weineng, et al. A Random-based Dynamic Grouping Strategy for Large Scale Multi-objective Optimization[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE, 2016: 468-475. |
[30] | Munetomo M, Goldberg D E. A Genetic Algorithm Using Linkage Identification by Nonlinearity Check[C]//IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028). Piscataway: IEEE, 1999: 595-600. |
[31] | Omidvar M N, Yang Ming, Mei Yi, et al. DG2: A Faster and More Accurate Differential Grouping for Large-scale Black-box Optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929-942. |
[32] | Omidvar M N, Li Xiaodong, Mei Yi, et al. Cooperative Co-evolution with Differential Grouping for Large Scale Optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 378-393. |
[33] | Sun Yuan, Kirley Michael, Saman Kumara Halgamuge. Extended Differential Grouping for Large Scale Global Optimization with Direct and Indirect Variable Interactions[C]//Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2015: 313-320. |
[34] | Jia Yahui, Mei Yi, Zhang Mengjie. Contribution-based Cooperative Co-evolution for Nonseparable Large-scale Problems with Overlapping Subcomponents[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 4246-4259. |
[35] | Jia Yahui, Chen Weineng, Gu Tianlong, et al. Distributed Cooperative Co-evolution with Adaptive Computing Resource Allocation for Large Scale Optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 188-202. |
[36] | Liu Haiyan, Wang Yuping, Fan Ninglei. A Hybrid Deep Grouping Algorithm for Large Scale Global Optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(6): 1112-1124. |
[37] | Omidvar M N, Kazimipour Borhan, Li Xiaodong, et al. CBCC3——A Contribution-based Cooperative Co-evolutionary Algorithm with Improved Exploration/Exploitation Balance[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE, 2016: 3541-3548. |
[38] | Ma Xiaoliang, Li Xiaodong, Zhang Qingfu, et al. A Survey on Cooperative Co-evolutionary Algorithms[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 421-441. |
[39] | Yang Ming, Omidvar M N, Li Changhe, et al. Efficient Resource Allocation in Cooperative Co-evolution for Large-scale Global Optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 493-505. |
[40] | Karypis George, Kumar Vipin. Multilevelk-way Partitioning Scheme for Irregular Graphs[J]. Journal of Parallel and Distributed Computing, 1998, 48(1): 96-129. |
[41] | Nowzari C, Preciado V M, Pappas G J. Optimal Resource Allocation for Control of Networked Epidemic Models[J]. IEEE Transactions on Control of Network Systems, 2017, 4(2): 159-169. |
[42] | Mei Wenjun, Mohagheghi S, Zampieri Sandro, et al. On the Dynamics of Deterministic Epidemic Propagation Over Networks[J]. Annual Reviews in Control, 2017, 44: 116-128. |
[43] | Wu Zuqing, Shi Chao, Ping Jialun, et al. Contributions of the Vector-channel at Finite Isospin Chemical Potential with the Self-consistent Mean Field Approximation[J]. Physical Review D, 2020, 101(7): 074008. |
[44] | van Mieghem Piet, Omic Jasmina, Kooij Robert. Virus Spread in Networks[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 1-14. |
[45] | 刘琛, 林盈, 胡晓敏. 差分演化算法各种更新策略的对比分析[J]. 计算机科学与探索, 2013, 7(11): 983-993. |
Liu Chen, Lin Ying, Hu Xiaomin. Analyses and Comparisons of Different Update Strategies for Differential Evolution[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 983-993. | |
[46] | Zegura E W, Calvert K L, Bhattacharjee S. How to Model an Internetwork[C]//Proceedings of IEEE INFOCOM'96. Conference on Computer Communications. Piscataway: IEEE, 1996: 594-602. |
[47] | Song An, Chen Weineng, Gong Yuejiao, et al. A Divide-and-conquer Evolutionary Algorithm for Large-scale Virtual Network Embedding[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(3): 566-580. |
[48] | Fischer Andreas, Juan Felipe Botero, Michael Till Beck, et al. Virtual Network Embedding: A Survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1888-1906. |
[49] | Song An, Chen Weineng, Luo Xiaonan, et al. Scheduling Workflows with Composite Tasks: A Nested Particle Swarm Optimization Approach[J]. IEEE Transactions on Services Computing, 2022, 15(2): 1074-1088. |
[1] | 黄思进, 文佳, 陈哲毅. 面向边缘车联网系统的智能服务迁移方法[J]. 系统仿真学报, 2025, 37(2): 379-391. |
[2] | 李超, 李贾宝, 丁才昌, 叶志伟, 左方威. 基于DRL的边缘监控任务卸载与资源分配算法[J]. 系统仿真学报, 2024, 36(9): 2113-2126. |
[3] | 罗天羽, 邢立宁, 王锐, 王凌, 石建迈, 孙昕. 基于改进差分进化算法的动态防空资源分配优化[J]. 系统仿真学报, 2024, 36(6): 1285-1297. |
[4] | 张大永, 杨镜宇, 吴曦. 兵棋推演空中任务智能预测方法研究[J]. 系统仿真学报, 2023, 35(1): 212-220. |
[5] | 吴学文, 廖婧贤. 云边协同系统中基于博弈论的资源分配与任务卸载方案[J]. 系统仿真学报, 2022, 34(7): 1468-1481. |
[6] | 程鹏, 张文柱, 谢书翰, 杨子轩. 基于移动边缘计算的车联网任务卸载研究与仿真[J]. 系统仿真学报, 2022, 34(6): 1304-1311. |
[7] | 许斌, 闫文卿, 韩卓凡, 何广深, 邓涛, 赵云凯, 亓晋. 基于烟花算法的基站群协作计算卸载模型研究[J]. 系统仿真学报, 2022, 34(2): 354-365. |
[8] | 李长云, 黎建波, 徐曦, 李亭立. 具有能量收集设备的移动边缘计算资源分配研究[J]. 系统仿真学报, 2022, 34(11): 2313-2322. |
[9] | 王凌, 吴楚格, 范文慧. 边缘计算资源分配与任务调度优化综述[J]. 系统仿真学报, 2021, 33(3): 509-520. |
[10] | 王青云, 焦德忠, 史铄, 彭根燕, 孙俊华, 段雨昕. 改进的蚁群干扰资源分配方法[J]. 系统仿真学报, 2021, 33(12): 2967-2974. |
[11] | 张巍, 李权, 周宇球, 罗雨航, 奚培锋. 有源配电网两阶段动态应急抗灾运行策略[J]. 系统仿真学报, 2020, 32(5): 936-945. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||