系统仿真学报 ›› 2025, Vol. 37 ›› Issue (8): 2043-2060.doi: 10.16182/j.issn1004731x.joss.24-0315

• 论文 • 上一篇    

多粒度协同演化的病毒传播控制资源分配方法

史宣莉1, 陈伟能1, 宋安1, 赵甜芳2   

  1. 1.华南理工大学 计算机科学与工程学院,广东 广州 510006
    2.暨南大学 新闻与传播学院,广东 广州 510006
  • 收稿日期:2024-03-31 修回日期:2024-06-05 出版日期:2025-08-20 发布日期:2025-08-26
  • 通讯作者: 陈伟能
  • 第一作者简介:史宣莉(2000-),女,博士生,研究方向为复杂网络建模与传播、群体智能等。
  • 基金资助:
    国家自然科学基金(U23B2058);国家自然科学基金(62376097);广东省区域联合基金重点项目(2022B1515120076)

Resource Allocation Method for Virus Spreading Control Based on Multi-granularity Cooperative Coevolution

Shi Xuanli1, Chen Weineng1, Song An1, Zhao Tianfang2   

  1. 1.School of Computer Science & Engineering, South China University of Technology, Guangzhou 510006, China
    2.School of Journalism & Communication, Jinan University, Guangzhou 510006, China
  • Received:2024-03-31 Revised:2024-06-05 Online:2025-08-20 Published:2025-08-26
  • Contact: Chen Weineng

摘要:

基于分而治之的思想,提出了多粒度协同演化的病毒传播控制资源分配方法(multi-granularity cooperative coevolution,MGCC)。根据人类社交网络结构特征,将网络按照不同分解粒度分解为不同规模的子网络设计了一种基于贡献度的分解粒度选择策略,用历史档案记录不同分解粒度对问题优化的贡献度,并根据优化状态选择合适分解粒度;设计了基于投影的约束修复策略保证解的可行性。结果表明:MGCC算法可以将复杂的社交网络结构分解,并结合不同演化算子协同解决资源分配问题,可以提高演化算子对解决病毒传播控制资源分配问题的有效性。

关键词: 病毒传播控制, 网络传播, 协同演化, 演化计算, 资源分配

Abstract:

According to the principle of simplifying a complex problem into sub-problems for solution, a resource allocation method for virus spreading control based on multi-granularity cooperative coevolution (MGCC) was proposed. According to the characteristics of human's social network structures, MGCC decomposed the network into sub-networks with different scales according to different decomposition granularities. A contribution-based decomposition granularity selection strategy was proposed. Historical archives were used to record the contribution of different decomposition granularities to optimization, and the appropriate decomposition granularity was selected according to the optimization status. A projection-based constraint repairing strategy was designed to ensure the feasibility of solutions. The results show that MGCC can decompose complex social network structures and ensure resource allocation by combining different evolutionary operators, improving the effectiveness of evolutionary operators in solving the resource allocation problem for virus spreading control.

Key words: virus spreading control, network spreading, cooperative coevolution, evolutionary computation, resource allocation

中图分类号: