系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1486-1498.doi: 10.16182/j.issn1004731x.joss.24-0170

• 论文 • 上一篇    

融合多尺度特征的航拍目标检测算法

杨路, 裴俊莹   

  1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 收稿日期:2024-02-28 修回日期:2024-05-20 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 裴俊莹
  • 第一作者简介:杨路(1979-),女,高工,硕士,研究方向为深度学习。
  • 基金资助:
    国家自然科学基金(62176035)

Aerial Target Detection Algorithm Fused with Multi-scale Features

Yang Lu, Pei Junying   

  1. School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2024-02-28 Revised:2024-05-20 Online:2025-06-20 Published:2025-06-18
  • Contact: Pei Junying

摘要:

为解决无人机航拍图像中小目标样本居多,但可提取特征信息少,不利于提升航拍目标检测精度问题,提出一种基于YOLOv8s改进的航拍小目标检测算法。将可变形卷积应用于主干网络特征提取模块,自适应感受目标在不同位置和尺度上的细节信息;提出包含特征收集模块和信息融合模块的多层次信息融合功能块,通过多层次信息融合功能块中的特征收集模块对主干网络不同尺度的特征信息进行提取和增强,获取精细的全局特征,利用信息融合模块将上下文丰富的语义信息注入到小目标检测层,实现局部信息和全局信息的融合,并将融合后的特征输入到检测网络中,得到检测结果。结果表明:所提算法的识别平均准确率和召回率相较于基线模型提升了6%和4.3%;相比于主流的检测算法,改进目标检测算法的小目标检测平均精度最高。

关键词: 航拍图像, 可变形卷积, 小目标检测, 多尺度特征融合, 目标检测层

Abstract:

In order to solve the problem that UAV aerial images have a large number of small target samples but little extractable feature information, which is not conducive to improving the accuracy of aerial target detection, an improved small target detection algorithm for aerial photography based on YOLOv8s is proposed. The algorithm applies deformable convolution to the feature extraction module of the backbone network to adaptively capture the details of the target at different locations and scales. The feature information at different scales of the backbone network is extracted and enhanced by the feature collection module in the multilevel information fusion function block to obtain fine global features.The context-rich semantic information is injected into the small target detection layer using the information fusion module to realize the fusion of local and global information, and the fused features are input into the detection network to obtain the detection results. The experimental results demonstrate that the proposed algorithm improves the recognition average accuracy and recall by 14.96% and 10.85%, respectively, compared to the baseline model. The leakage rate is reduced by 7.11%. The improved target detection algorithm has the highest average accuracy for small target detection compared to mainstream detection algorithms.

Key words: aerial image, deformable convolution, small target detection, multi-scale feature fusion, object detection layer

中图分类号: