系统仿真学报 ›› 2025, Vol. 37 ›› Issue (6): 1474-1485.doi: 10.16182/j.issn1004731x.joss.24-0163

• 论文 • 上一篇    

面向移动机器人路径规划的增强型人工大猩猩算法

叶晨, 邵鹏, 张少平, 李文婷, 周腾明   

  1. 江西农业大学 计算机与信息工程学院,江西 南昌 330045
  • 收稿日期:2024-02-26 修回日期:2024-05-12 出版日期:2025-06-20 发布日期:2025-06-18
  • 通讯作者: 邵鹏
  • 第一作者简介:叶晨(2000-),女,硕士生,研究方向为人工智能、智能优化算法等。
  • 基金资助:
    国家自然科学基金(71863018);江西省社会科学规划(21GL12)

Enhanced Artificial Gorilla Algorithm for Mobile Robot Path Planning

Ye Chen, Shao Peng, Zhang Shaoping, Li Wenting, Zhou Tengming   

  1. College of Computer Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
  • Received:2024-02-26 Revised:2024-05-12 Online:2025-06-20 Published:2025-06-18
  • Contact: Shao Peng

摘要:

为解决移动机器人在复杂地形场景的路径规划中易陷入局部最优和收敛速度慢等问题,提出了一种多策略集成的增强型人工大猩猩算法(enhanced artificial gorilla troops optimizer with integration of quadratic interpolation and elite individual genetic strategies,QGGTO)。融合二次插值策略和精英个体遗传策略,促进候选解之间的信息交流以加速收敛,并维持种群遗传多样性以避免局部最优。针对包含规则障碍物和不规则障碍物的复杂地形场景,构建了综合考虑行走距离、安全性和转向角度的成本函数,用于统一评估算法的路径规划性能。实验结果表明:QGGTO整体寻优性能优于GTO等7种竞争算法。在4种复杂障碍环境下,QGGTO能够辅助机器人规划出最接近全局最优的路径,验证了其在实际应用中的有效性。

关键词: 机器人路径规划, 人工大猩猩算法, 二次插值, 精英个体遗传策略, 元启发式算法

Abstract:

To address the issues of susceptibility to local optima and slow convergence in mobile robot path planning within complex terrain scenarios, an enhanced artificial gorilla troops optimizer with integration of quadratic interpolation and elite individual genetic strategies (QGGTO) is proposed. The algorithm integrates quadratic interpolation and elite individual genetic strategies to promote information exchange among candidate solutions, thereby accelerating convergence, while maintaining population diversity to avoid local optima. For complex terrains containing both regular and irregular obstacles, a cost function that comprehensively considers walking distance, safety, and turning angles is constructed to uniformly evaluate the path planning performance of the algorithm. Simulation experiments demonstrate that QGGTO overall optimization performance surpassing GTO and six other competitive algorithms. QGGTO can assist robots in planning paths closest to the global optimum in four complex obstacle environments, validating its effectiveness in practical applications.

Key words: robot path planning, artificial gorilla troops optimizer, quadratic interpolation, elite individual genetic strategy, metaheuristic algorithm

中图分类号: