系统仿真学报 ›› 2024, Vol. 36 ›› Issue (5): 1179-1188.doi: 10.16182/j.issn1004731x.joss.23-0022

• 研究论文 • 上一篇    下一篇

基于生产间歇改进Elman的转炉煤气发生量预测

费佳杰1(), 吴定会1(), 范俊岩1, 汪晶2   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214122
    2.上海宝信软件股份有限公司,上海 201203
  • 收稿日期:2023-01-06 修回日期:2023-02-13 出版日期:2024-05-15 发布日期:2024-05-21
  • 通讯作者: 吴定会 E-mail:404623746@qq.com;wdh123@jiangnan.edu.cn
  • 第一作者简介:费佳杰(1999-),男,硕士生,研究方向为能源预测。E-mail:404623746@qq.com
  • 基金资助:
    国家重点研发计划(2020YFB1711102)

Prediction of Converter Gas Generation Based on Intermission Production Improved Elman

Fei Jiajie1(), Wu Dinghui1(), Fan Junyan1, Wang Jing2   

  1. 1.College of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
    2.Shanghai Baosight Software Co. Ltd, Shanghai 201203, China
  • Received:2023-01-06 Revised:2023-02-13 Online:2024-05-15 Published:2024-05-21
  • Contact: Wu Dinghui E-mail:404623746@qq.com;wdh123@jiangnan.edu.cn

摘要:

针对钢铁企业转炉煤气发生量间歇时长波动大,预测精度低的问题,基于生产间歇特征分类,提出基于混沌映射粒子群算法(CPSO)优化Elman神经网络的转炉煤气发生量预测模型(CPSO-Elman)提取转炉煤气发生量时间序列中生产间歇特征,并根据间歇时长进行分类;引入经混沌扰动改进的PSO算法优化ENN的初始权值和阈值,利用非线性更新的惯性权重以平衡全局搜索与局部搜索能力,并在粒子初始化中添加了混沌映射;构建CPSO-Elman转炉煤气发生量组合预测模型;在预测未来时间内间歇时长基础上,预测转炉煤气发生量。仿真结果表明:所提方法在预测精度上比未经过优化而预测的方法提高了5%左右。

关键词: 转炉煤气, 发生量预测, PSO算法, 混沌扰动, Elman神经网络, 间歇分类

Abstract:

Aiming at large fluctuations of intermission and low prediction accuracy in iron and steel industry, based on the classification of intermission characteristics, a converter gas generation predicting model(CPSO-Elman) based on Elman neural network(ENN) optimized by chaoticPSO(CPSO) algorithm is proposed. The intermittent characteristics of converter gas generation time series are extracted and raw data is classified according to intermittent duration. The PSO algorithm improved by chaotic disturbance is introduced to optimize the initial weight and threshold of ENN and inertia weight of nonlinear updating is designed to balance global search ability and local search ability. Construct the combined prediction model of CPSO-Elman converter gas generation. Converter gas generation is predicted on the basis of predicting the intermission in the future time. Simulation results show that prediction accuracy of the proposed method is about 5% higher than that of the method without optimization.

Key words: converter gas, generation prediction, PSO algorithm, chaotic perturbation, Elman neural network, intermission classification

中图分类号: