系统仿真学报 ›› 2020, Vol. 32 ›› Issue (1): 44-53.doi: 10.16182/j.issn1004731x.joss.17-0448

• 仿真建模理论与方法 • 上一篇    下一篇

基于卡尔曼粒子滤波算法的锂电池SOC估计

夏飞1, 王志成2, 郝硕涛3, 彭道刚1, 余贝丽4, 黄毅敏1   

  1. 1. 上海电力学院自动化工程学院,上海 200090;
    2. 浙江省送变电工程有限公司,浙江 杭州 310020;
    3. 北京电力公司房山供电公司,北京 102401;
    4. 国家电投芜湖发电有限责任公司,安徽 芜湖 241009
  • 收稿日期:2017-10-19 修回日期:2018-05-30 发布日期:2020-01-17
  • 作者简介:夏飞(1978-),男,江西南昌,博士,副教授,研究方向为动力电池监测及诊断;王志成(1990-),男,河南永城,硕士,研究方向为动力电池监测;郝硕涛(1989-),男,河北保定,硕士,研究方向为发电设备监测及诊断。

State of Charge Estimation of the Lithium-Ion Battery Based on Improved Extended Kalman Particle Filter Algorithm

Xia Fei1, Wang Zhicheng2, Hao Shuotao3, Peng Daogang1, Yu Beili4, Huang Yimin1   

  1. 1. College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
    2. Zhejiang Electric Transmission and Transformer Co., Ltd., Hangzhou 310020, China;
    3. Fangshan Power Supply Company, Beijing Power Company, Beijing 102401, China;
    4. State Power Investment Group, Wuhu Power Generation Co., Ltd, Anhui, Wuhu 241009, China
  • Received:2017-10-19 Revised:2018-05-30 Published:2020-01-17

摘要: 基于UTS分容柜所测得的实验数据,建立了18650锂电池的三阶Thevenin模型。将扩展卡尔曼滤波算法(Extened Kalman Filter,EKF)作为粒子滤波算法(Particle Filter,PF)的重要密度函数形成了扩展卡尔曼粒子滤波算法(Extened Kalman Particle Filter,EKPF)。对于EKPF算法在重采样过程中存在的样本退化、多样性丧失的问题,提出了一种通过权值排序的优胜劣汰粒子选择算法。采用通过该方法改进的EKPF算法对所建立的三阶Thevenin模型进行电池荷电状态(State of Charge,SOC)估计,实验结果表明,改进EKPF算法的SOC估计精度优于EKF算法和PF算法的SOC估计精度。

关键词: SOC(State of Charge)估计, 改进EKPF算法, 重采样, 权值排序

Abstract: The three order Thevenin model of 18650 Lithium-Ion battery is established based on the experimental data of UTS divided capacity tester. The extended kalman filtering (EKF) algorithm is adopted as the important density function of particle filter (PF) algorithm, and the extended Kalman particle filter (EKPF) algorithm is formed. The sample degradation and lack of diversity in the re-sampling stage of EKPF algorithm is optimized by an improved re-sampling algorithm which based on a weight sorting and survival of the fittest particles. The improved EKPF algorithm is applied to estimate the State of Charge (SOC) of the three order Thevenin model of batteries. The experimental results show that the SOC estimation accuracy of the improved EKPF algorithm is better than that of the EKF algorithm and the PF algorithm.

Key words: SOC(State of Charge) estimation, improved EKPF algorithm, re-sampling, weight sorting

中图分类号: