系统仿真学报 ›› 2017, Vol. 29 ›› Issue (4): 784-790.doi: 10.16182/j.issn1004731x.joss.201704011

• 仿真建模理论与方法 • 上一篇    下一篇

单相PWM整流器分数阶建模与仿真分析

郑征, 马方军, 韦延方   

  1. 河南理工大学电气工程与自动化学院,焦作 454000
  • 收稿日期:2015-06-30 修回日期:2015-08-10 出版日期:2017-04-08 发布日期:2020-06-03
  • 作者简介:郑征(1965-),女,河南焦作,博士,教授,研究方向为电力电子与电力传动;马方军(1987-),男,河南项城,硕士生,研究方向为电力电子与电力传动。
  • 基金资助:
    国家自然科学基金(61340015),河南省科技厅国际联合基金(144300540014)

Fractional Modeling and Simulation Analysis of Single-Phase PWM Rectifier

Zheng Zheng, Ma Fangjun, Wei Yanfang   

  1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2015-06-30 Revised:2015-08-10 Online:2017-04-08 Published:2020-06-03

摘要: 基于实际电容和实际电感在本质上是分数阶的事实,针对单相PWM整流器建模问题进行研究。在分析分数阶Caputo定义建模方法和PWM整流器拓扑结构的基础上,实现采用分数阶微积分理论建立单相PWM整流器的分数阶数学模型。基于瞬时功率理论,针对直流侧电容电压直流分量大小、交流分量峰峰值大小、动态响应时间分析。理论上讲,直流分量大小不随电容阶数变化,而交流分量峰峰值大小则相反,动态响应时间随着电容阶数变小而响应速度变快。建立了单相PWM整流器分数阶模型的Matlab/Simulink仿真模型,仿真结果验证了分数阶建模与理论分析的有效性。

关键词: 分数阶微积分, PWM整流器, Caputo定义建模, 瞬时功率理论

Abstract: The modeling problem of single-phase PWM rectifier was studied, based on the fact that actual capacitance and inductance is the fractional in nature. The mathematical model of single-phase PWM rectifier was established by using fractional calculus theory, based on modeling method analysis of fractional Caputo definition and PWM rectifier topology. According to instantaneous power theory, for DC component value, the peak to peak value AC component, and the time of dynamic response of the DC side capacitor voltage were analyzed. In theory, DC component value does not change with the order number capacitance, while the AC component is opposite, dynamic response time will be smaller and faster response speed by the capacitance order. A Matlab/Simulink simulation model of a single-phase PWM rectifier fractional model was established, and then simulation results verify the fractional modeling effectiveness and theoretical analysis.

Key words: fractional calculus, PWM rectifier, Caputo definition of modeling, the theory of instantaneous power

中图分类号: