| [1] |
Sun L G, Wu G, Wang Q, et al. Nanostructural Metallic Materials: Structures and Mechanical Properties[J]. Materials Today, 2020, 38: 114-135.
|
| [2] |
白雄飞, 龚水成, 李雪松, 等. 基于泊松融合数据增强的焊缝金相组织缺陷分类研究[J]. 上海交通大学学报, 2023, 57(10): 1316-1328.
|
|
Bai Xiongfei, Gong Shuicheng, Li Xuesong, et al. Defect Classification of Weld Metallographic Structure Based on Data Augmentation of Poisson Fusion[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1316-1328.
|
| [3] |
鲁斌, 杨烜, 杨振宇, 等. 自适应采样与重影多尺度特征融合的轻量化焊缝缺陷检测[J]. 系统仿真学报, 2025, 37(8): 1978-1990.
|
|
Lu Bin, Yang Xuan, Yang Zhenyu, et al. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection[J]. Journal of System Simulation, 2025, 37(8): 1978-1990.
|
| [4] |
赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219.
|
|
Zhao Langyue, Wu Yiquan. Research Progress on Surface Defect Detection Methods Based on Machine Vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 198-219.
|
| [5] |
Zhao Yaling, Wang Hai, Xie Xiaoming, et al. An Enhanced YOLOv5-based Algorithm for Metal Surface Defect Detection[J]. Applied Sciences, 2023, 13(20): 11473.
|
| [6] |
胡依伦, 杨俊, 许聪源, 等. PIC2f-YOLO: 金属表面缺陷检测轻量化方法[J]. 光电工程, 2025, 52(1): 240250.
|
|
Hu Yilun, Yang Jun, Xu Congyuan, et al. PIC2f-YOLO: A Lightweight Method for Metal Surface Defect Detection[J]. Opto-Electronic Engineering, 2025, 52(1): 240250.
|
| [7] |
张寅, 朱桂熠, 施天俊, 等. 基于特征融合与注意力的遥感图像小目标检测[J]. 光学学报, 2022, 42(24): 2415001.
|
|
Zhang Yin, Zhu Guiyi, Shi Tianjun, et al. Small Object Detection in Remote Sensing Images Based on Feature Fusion and Attention[J]. Acta Optica Sinica, 2022, 42(24): 2415001.
|
| [8] |
Müller Martin, Stiefel Marie, Bachmann Björn-Ivo, et al. Overview: Machine Learning for Segmentation and Classification of Complex Steel Microstructures[J]. Metals, 2024, 14(5): 553.
|
| [9] |
Hütten Nils, Meyes Richard, Meisen Tobias. Vision Transformer in Industrial Visual Inspection[J]. Applied Sciences, 2022, 12(23): 11981.
|
| [10] |
王改华, 李柯鸿, 龙潜, 等. 基于知识蒸馏的轻量化Transformer目标检测[J]. 系统仿真学报, 2024, 36(11): 2517-2527.
|
|
Wang Gaihua, Li Kehong, Long Qian, et al. Object Detection of Lightweight Transformer Based on Knowledge Distillation[J]. Journal of System Simulation, 2024, 36(11): 2517-2527.
|
| [11] |
Zhao Yian, Wenyu Lü, Xu Shangliang, et al. DETRs Beat YOLOs on Real-time Object Detection[EB/OL]. (2024-04-03) [2025-11-21]. .
|
| [12] |
Wenyu Lü, Zhao Yian, Chang Qinyao, et al. RT-DETRv2: Improved Baseline with Bag-of-freebies for Real-time Detection Transformer[EB/OL]. (2024-07-24) [2025-11-21]. .
|
| [13] |
Wang Shuo, Xia Chunlong, Feng Lü, et al. RT-DETRv3: Real-time End-to-end Object Detection with Hierarchical Dense Positive Supervision[C]//2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE, 2025: 1628-1636.
|
| [14] |
Sauer A, Boesel F, Dockhorn T, et al. Fast High-resolution Image Synthesis with Latent Adversarial Diffusion Distillation[EB/OL]. (2024-03-18) [2025-11-21]. .
|
| [15] |
Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. (2017-04-17) [2025-09-19]. .
|
| [16] |
Carion N, Massa F, Synnaeve G, et al. End-to-end Object Detection with Transformers[C]//Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
|
| [17] |
Zhu Xizhou, Su Weijie, Lu Lewei, et al. Deformable DETR: Deformable Transformers for End-to-end Object Detection[C]//ICLR 2021 Conference. New York: ICLR, 2021: 1-16.
|
| [18] |
Meng Depu, Chen Xiaokang, Fan Zejia, et al. Conditional DETR for Fast Training Convergence[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 3631-3640.
|
| [19] |
Zhang Hao, Li Feng, Liu Shilong, et al. DINO: DETR with Improved DeNoising Anchor Boxes for End-to-end Object Detection[C]//ICLR 2023 Conference. New York: ICLR, 2023: 1-19.
|
| [20] |
Li Feng, Zhang Hao, Liu Shilong, et al. DN-DETR: Accelerate DETR Training by Introducing Query DeNoising[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 13609-13617.
|
| [21] |
Sun Peize, Zhang Rufeng, Jiang Yi, et al. Sparse R-CNN: End-to-end Object Detection with Learnable Proposals[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 14449-14458.
|
| [22] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778.
|
| [23] |
Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
|
| [24] |
Cao H, Wang Y, Chen J, et al. Swin-unet: UNet-like Pure Transformer for Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(2): 302-312.
|
| [25] |
Ultralytics. YOLO(Version 8.0)[EB/OL]. (2023-01-10) [2025-11-21]. .
|
| [26] |
Khanam R, Hussain M. YOLOv11: An Overview of the Key Architectural Enhancements[EB/OL]. (2024-10-23) [2025-11-21]. .
|