系统仿真学报 ›› 2026, Vol. 38 ›› Issue (1): 1-13.doi: 10.16182/j.issn1004731x.joss.25-1166

• 论文 •    下一篇

基于层次化显微特征建模与仿真的缺陷检测方法

邹静1, 谭谞1,3, 毛俊佶1, 高海东2, 谭建荣3   

  1. 1.浙江科技大学 计算机学院,浙江 杭州 310023
    2.浙江工业大学 计算机科学与技术学院,浙江 杭州 310058
    3.浙江大学,浙江 杭州 310013
  • 收稿日期:2025-11-27 修回日期:2025-12-12 出版日期:2026-01-18 发布日期:2026-01-28
  • 通讯作者: 谭谞
  • 第一作者简介:邹静(2005-),女,本科生,研究方向为计算机视觉。
  • 基金资助:
    国家自然科学基金(62406287)

Defect Detection Method Based on Hierarchical Microscopic Feature Modeling and Simulation

Zou Jing1, Tan Xu1,3, Mao Junji1, Gao Haidong2, Tan Jianrong3   

  1. 1.School of Computer Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
    2.School of Computer Science, Zhejiang University of Technology, Hangzhou 310058, China
    3.Zhejiang University, Hangzhou 310013, China
  • Received:2025-11-27 Revised:2025-12-12 Online:2026-01-18 Published:2026-01-28
  • Contact: Tan Xu

摘要:

为解决显微图像中小尺寸、低对比度及复杂背景下的缺陷检测难题,提出一种基于层次化显微特征建模与仿真的缺陷检测技术。该方法以RT-DETR(real-time detection transformer)框架为基础,构建HM-RTDETR(hierarchical microscopic RT-DETR)模型,在保持Transformer全局特征建模能力的基础上,引入高密度一对一Mosaic(Dense O2O-Mosaic)仿真增强以提升小样本监督密度,设计深度可分离卷积(depthwise separable convolution,DWConv)局部细节增强模块强化显微纹理特征提取能力,并采用可学习上采样模块(PatchExpand)实现空间语义重建,从而增强模型对微小缺陷的辨识能力。进一步构建DWConv与PatchExpand的协同融合结构,实现多尺度特征自适应整合与轻量化优化。实验结果表明,所提模型在两组离线增强机制下均保持优势:HM-RTDETR的mAP0.5-0.95在设置I与设置II下分别达到57.8%与70.4%,较对应基线分别提升18.9%和21.6%。在精度与实时性之间实现良好平衡,为金相显微组织自动检测提供了一种高效、可推广的解决方案。

关键词: 显微缺陷检测, RT-DETR, Mosaic数据增强, DWConv, PatchExpand, 轻量化网络

Abstract:

To address the challenge of detecting small and low-contrast defects in complex microscopic images, a defect method technology based on hierarchical microscopic feature modeling and simulation is proposed. The method is built on the RT-DETR (real-time detection transformer)framework to construct the HM-RTDETR (hierarchical microscopic RT-DETR) model. It maintains the global feature modeling ability of the Transformer and introduces a Dense O2O-Mosaic,a high-density one-to-one Mosaic augmentation strategy, to increase supervision density for small samples. A depthwise separable convolution (DWConv) module is used to enhance local detail extraction in microscopic textures, and a learnable PatchExpand module is applied for spatial semantic reconstruction, improving the identification of tiny defects. Furthermore, thecooperative fusion of DWConv and PatchExpand achieves adaptive multi-scale feature integration and lightweight optimization.Experimental results show that the proposed model maintains consistent advantages under both offline augmentation settings: HM-RTDETR achieves mAP0.5-0.95 of 57.8% and 70.4% under Setting I and Setting II, respectively, improving over the corresponding baselines by 18.9% and 21.6%.The method achieves a good balance between accuracy and efficiency, providing an effective and extensible solution for automatic microscopic defect detection and simulation analysis.

Key words: microscopic defect detection, RT-DETR(real-time detection transformer), Mosaic data augmentation, DWConv, PatchExpand, lightweight network

中图分类号: