1 |
王俐英, 林嘉琳, 董厚琦, 等. 计及阶梯式碳交易的综合能源系统优化调度[J]. 系统仿真学报, 2022, 34(7): 1393-1404.
|
|
Wang Liying, Lin Jialin, Dong Houqi, et al. Optimal Dispatch of Integrated Energy System Considering Ladder-type Carbon Trading[J]. Journal of System Simulation, 2022, 34(7): 1393-1404.
|
2 |
康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 1-11.
|
|
Kang Zhongqing, Yao Liangzhong. Key Scientific Issues and Theoretical Research Framework for Power Systems with High Proportion of Renewable Energy[J]. Automation of Electric Power Systems, 2017, 41(9): 1-11.
|
3 |
汪茹康, 周家辉, 徐钢, 等. 深度调峰背景下的厂级热电负荷分配优化[J]. 动力工程学报, 2023, 43(2): 185-193.
|
|
Wang Rukang, Zhou Jiahui, Xu Gang, et al. Optimization of Plant-level Thermal and Power Load Distribution Under the Back-ground of Deep Peak Shaving[J]. Journal of Chinese Society of Power Engineering, 2023, 43(2): 185-193.
|
4 |
王子杰, 顾煜炯, 刘浩晨, 等. 热电联产机组热电解耦技术对比分析[J]. 化工进展, 2022, 41(7): 3564-3572.
|
|
Wang Zijie, Gu Yujiong, Liu Haochen, et al. Comparison and Analysis of Heat-power Decoupling Technologies for CHP Units[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3564-3572.
|
5 |
陈艳波, 马彦虎, 郑国栋, 等. 计及需求响应的多CHP机组热电解耦协调规划[J]. 电网技术, 2022, 46(10): 3821-3830.
|
|
Chen Yanbo, Ma Yanhu, Zheng Guodong, et al. Coordinated Planning of Thermo-electrolytic Coupling for Multiple CHP Units Considering Demand Response[J]. Power System Technology, 2022, 46(10): 3821-3830.
|
6 |
袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42(12): 4440-4448, 中插14.YuanGuili, LiuHuaqi, YuJianfang, et al. Combined Heat and Power Optimal Dispatching in Virtual Power Plant with Carbon Capture Cogeneration Unit[J]. Proceedings of the CSEE, 2022, 42(12): 4440-4448, S14.
|
7 |
刘铸, 宋建成, 马素霞, 等. 2×300 MW热电联产机组灵活性供热控制策略研发[J]. 动力工程学报, 2022, 42(4): 387-392.
|
|
Liu Zhu, Song Jiancheng, Ma Suxia, et al. Research and Development of Flexible Heating Control Strategy for 2×300 MW Cogeneration Units[J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 387-392.
|
8 |
Sabah Ahmed Abdul-Wahab, Abubaker Sayed Mohamed Omer, Yetilmezsoy Kaan, et al. Modelling the Clogging of Gas Turbine Filter Houses in Heavy-duty Power Generation Systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2020, 26(2): 119-143.
|
9 |
Lu Shilei, Li Yuwei, Xia Hongwei. Study on the Configuration and Operation Optimization of CCHP Coupling Multiple Energy System[J]. Energy Conversion and Management, 2018, 177: 773-791.
|
10 |
龚烽. 超临界机组汽轮机系统的机理建模[D]. 保定: 华北电力大学, 2018.
|
|
Gong Feng. Mechanism Modeling of Steam Turbine System of Supercritical Unit[D]. Baoding: North China Electric Power University, 2018.
|
11 |
余圣方, 刘树清, 张瑞鹏, 等. 500MW/800MW超临界火电机组一机多模仿真机的研制与开发[J]. 中国电力, 2005, 38(12): 93-96.
|
|
Yu Shengfang, Liu Shuqing, Zhang Ruipeng, et al. Development of Simulator with Multi-models for 500 MW/800 MW Supercritical Thermal Power Unit[J]. Electric Power, 2005, 38(12): 93-96.
|
12 |
Salehnasab B, Poursaeidi E. Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine[J]. Engineering Fracture Mechanics, 2020, 225: 106842.
|
13 |
Chen Feier, Ruan Can, Yu Tao, et al. Effects of Fuel Variation and Inlet Air Temperature on Combustion Stability in a Gas Turbine Model Combustor[J]. Aerospace Science and Technology, 2019, 92: 126-138.
|
14 |
包哲. 基于智能算法的综合能源系统动态建模仿真与协同运行优化集成研究[D]. 北京: 华北电力大学, 2020.
|
|
Bao Zhe. Study on Coupled Dynamic Simulation and Synergistic Operation Optimization of Integrated Energy System Based on Intelligent Algorithm[D]. Beijing: North China Electric Power University, 2020.
|
15 |
郑露霞. 重型燃气轮机透平冷却建模与热力性能分析[D]. 北京: 中国科学院大学, 2019.
|
|
Zheng Luxia. Cooling Turbine Modeling and Thermal Performance Analysis for Heavy-duty Gas Turbines[D]. Beijing: University of Chinese Academy of Sciences, 2019.
|
16 |
董亚明. 融合机理模型与智能模型的复杂过程混合建模研究[D]. 上海: 华东理工大学, 2015.
|
|
Dong Yaming. Hybrid Modeling Approach for Complex Process Combining Mechanism Model and Intelligent Model[D]. Shanghai: East China University of Science and Technology, 2015.
|
17 |
Psichogios D C, Ungar L H. A Hybrid Neural Network-first Principles Approach to Process Modeling[J]. AIChE Journal, 1992, 38(10): 1499-1511.
|
18 |
Acuña Gonzalo, Cubillos Francisco, Thibault Jules, et al. Comparison of Methods for Training Grey-box Neural Network Models[J]. Computers & Chemical Engineering, 1999, 23(S1): S561-S564.
|
19 |
Simon Levente L, Fischer Ulrich, Hungerbühler Konrad. Modeling of a Three-phase Industrial Batch Reactor Using a Hybrid First-principles Neural-network Model[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7336-7343.
|
20 |
Su Hongte, Bhat N, Minderman P A, et al. Integrating Neural Networks with First Principles Models for Dynamic Modeling[M]//Balchen JG. Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes. Oxford: Pergamon, 1993: 327-332.
|
21 |
Chen Libei, Hontoir Yves, Huang Dexian, et al. Combining First Principles with Black-box Techniques for Reaction Systems[J]. Control Engineering Practice, 2004, 12(7): 819-826.
|
22 |
Hinchliffe M, Montague G, Willis M, et al. Hybrid Approach to Modeling an Industrial Polyethylene Process[J]. AIChE Journal, 2003, 49(12): 3127-3137.
|