系统仿真学报 ›› 2023, Vol. 35 ›› Issue (7): 1455-1471.doi: 10.16182/j.issn1004731x.joss.23-0057
陆涵1,2(), 张霖1,2(
), 王昆玉1,2, 黄泽军1,2, 程鸿博1,2, 崔晋1,2
收稿日期:
2023-01-18
修回日期:
2023-03-29
出版日期:
2023-07-29
发布日期:
2023-07-19
通讯作者:
张霖
E-mail:luhan@buaa.edu.cn;johnlin999@163.com
作者简介:
陆涵(1994-),男,博士生,研究方向为数字孪生、可信评估。E-mail:luhan@buaa.edu.cn
Han Lu1,2(), Lin Zhang1,2(
), Kunyu Wang1,2, Zejun Huang1,2, Hongbo Cheng1,2, Jin Cui1,2
Received:
2023-01-18
Revised:
2023-03-29
Online:
2023-07-29
Published:
2023-07-19
Contact:
Lin Zhang
E-mail:luhan@buaa.edu.cn;johnlin999@163.com
摘要:
装备数字孪生大规模落地应用的一个关键瓶颈问题是缺乏系统有效的可信评估方法。本文分析了装备数字孪生的动态演化性、虚实交互性等关键特征,提出了装备数字孪生可信评估框架,包括数字孪生的可信内涵、多维多层次可信评估指标体系和可信评估方法论,并以机械臂数字孪生为例说明了整个评估过程,可以为数字孪生的评估、构建提供方向性指导。
中图分类号:
陆涵, 张霖, 王昆玉, 黄泽军, 程鸿博, 崔晋. 装备数字孪生可信评估框架研究[J]. 系统仿真学报, 2023, 35(7): 1455-1471.
Han Lu, Lin Zhang, Kunyu Wang, Zejun Huang, Hongbo Cheng, Jin Cui. A Framework on Equipment Digital Twin Credibility Assessment[J]. Journal of System Simulation, 2023, 35(7): 1455-1471.
表5
可信评估方法清单
一级目录 | 二级目录 | 三级目录 | 四级目录 |
---|---|---|---|
软件评估F1 | 代码检查F11 | 词法检查F111 | |
语法检查F112 | |||
语义检查F113 | |||
算法分析F12 | 可读性分析F121 | ||
健壮性分析F122 | |||
时间复杂度分析F123 | |||
空间复杂度分析F124 | |||
神经网络结构分析F125 | |||
执行测试F13 | 执行监控F131 | ||
执行分析F132 | |||
边界测试F133 | |||
压力测试F134 | |||
执行定位F135 | |||
分离测试F136 | |||
数据集验证F14 | 数据集划分法F141 | 留出法F1411 | |
留一法F1412 | |||
k折交叉验证F1413 | |||
分类问题评估法F142 | 准确率F1421 | ||
精准率F1422 | |||
召回率F1423 | |||
F1分数F1424 | |||
ROC曲线F1425 | |||
AUC F1426 | |||
回归问题评估法F143 | MAE F1431 | ||
MSE F1432 | |||
RMSE F1433 | |||
MSLE F1434 | |||
MAPE F1435 | |||
主观方法F2 | 人工审核F21 | ||
图灵测试F22 | |||
专家打分F23 | |||
多方校验F24 | |||
经验参数对比F25 | |||
半形式化方法F3 | 一致性检查F31 | ||
图分析F32 | 数据流图分析F321 | ||
时序图分析F322 | |||
连接图分析F323 | |||
状态机图分析F324 | |||
结构图分析F325 | |||
键合图分析F326 | |||
因果图分析F327 | |||
形式化方法F4 | 归纳推理F41 | ||
断言检查F42 | |||
证据理论F43 | |||
形式审查F44 | |||
逻辑推断F45 | |||
结果比较F5 | 灵敏度分析F51 | ||
概率统计F52 | 假设性检验F521 | 置信区间法F5211 | |
T检验F5212 | |||
卡方检验F5213 | |||
Hotelling's T2 tests F5214 | |||
非假设性检验F522 | Theil's inequality F5221 | ||
Multivariate analysis of variance F5222 | |||
回归测试 F5223 | |||
确定性数据分析F53 | 时域数据分析F531 | ||
频域数据分析F532 | |||
时频域数据分析F533 | |||
机器学习F534 | |||
误差效应评估F54 | |||
集成分析F6 | AHP类F61 | ||
贝叶斯网络F62 | |||
灰色关联度分析F63 | |||
复杂网络分析F64 | |||
演化分析F7 | 演化时效性F71 | 控制系统实时性测试F711 | |
软件系统实时性测试F712 | |||
演化准确性F72 | 时间域分析F721 | ||
频域分析F722 | |||
演化平稳性F73 | 李雅普诺夫稳定性理论F731 | ||
算法收敛性分析F732 | |||
演化系统性F74 | |||
数据检查F8 | 数据认证F81 | 协议认证F811 | |
机构认证F812 | |||
时效认证F813 | |||
数据校验F82 | 逻辑关系校验F821 | ||
自身冗余信息校验F822 | |||
行业标准对照F823 | |||
数据价值校验F824 | |||
实验校验F825 | |||
数据源分析F83 | 性能分析F831 | ||
环境分析F832 | |||
布局关联分析F833 |
1 | Zhang Lin, Zhou Longfei, Horn B K P. Building a Right Digital Twin with Model Engineering[J]. Journal of Manufacturing Systems, 2021, 59: 151-164. |
2 | Boschert S, Rosen R. Digital Twin-the Simulation Aspect[M]. Cham: Springer International Publishing, 2016: 59-74. |
3 | Bielefeldt B, Hochhalter J, Hartl D. Computationally Efficient Analysis of SMA Sensory Particles Embedded in Complex Aerostructures Using a Substructure Approach[C]//ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York, USA: ASME, 2015: V001T02A007. |
4 | Liu Shimin, Bao Jinsong, Lu Yuqian, et al. Digital Twin Modeling Method Based on Biomimicry for Machining Aerospace Components[J]. Journal of Manufacturing Systems, 2021, 58, Part B: 180-195. |
5 | 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1-10. |
Zhang Lin. Cold Thinking About the Digital Twin and the Modeling and Simulation Techniques Behind It[J]. Journal of System Simulation, 2020, 32(4): 1-10. | |
6 | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
Zhang Lin, Lu Han. Discussing Digital Twin From of Modeling and Simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007. | |
7 | Tuegel E J. The Airframe Digital Twin: Some Challenges to Realization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012: 1812. |
8 | Huang Jingwei, Gheorghe A, Handley H, et al. Towards Digital Engineering: the Advent of Digital Systems Engineering[J]. International Journal of System of Systems Engineering, 2020, 10(3): 234-261. |
9 | 张霖, 王昆玉, 赖李媛君, 等. 基于建模仿真的体系工程[J]. 系统仿真学报, 2022, 34(2): 179-190. |
Zhang Lin, Wang Kunyu, Yuanjun Laili, et al. Modeling & Simulation Based System of Systems Engineering[J]. Journal of System Simulation, 2022, 34(2): 179-190. | |
10 | Balci O. Verification Validation and Accreditation of Simulation Models[C]//Proceedings of the 29th Conference on Winter simulation. USA: IEEE Computer Society, 1997: 135-141. |
11 | Lehmann A. Verification and Validation (V&V) of Models and Simulations (M&S)-Past, Present and Future[R]. NATO-Lecture Series on Application of the GM-VV the Generic Methodology for Verification & Validation of Models, Simulations and Data, 2014. |
12 | Department of Defense, Untied States of America. Documentation of Verification, Validation, and Accreditation (VV&A) for Models and Simulations: MIL-S [S]. Washington: Department of Defense, Untied States of America, 2008. |
13 | IEEE. IEEE Recommended Practice for Verification, Validation, and Accreditation of a Federationan Overlay to the High Level Architecture Federation Development and Execution Process: 1516.4-2007 [S]. Piscataway, NJ, USA: IEEE, 2007. |
14 | SGGV. Generic Methodology for Verification and Validation (GM-VV), Volume 1.1, Volume 1.2, Volume 1.3 [S]. USA: Simulation Interoperability Standardization Organization (SISO), 2012-2013. |
15 | 唐见兵. 作战仿真系统可信性研究[D]. 长沙: 国防科技大学, 2009. |
Tang Jianbing. Research on the Credibility of Warfare Simulation System[D]. Changsha: National University of Defense Technology, 2009. | |
16 | 廖瑛, 邓方林, 梁加红, 等. 系统建模与仿真的校核、验证与确认(VV&A)技术[M]. 长沙: 国防科技大学出版社, 2006. |
Liao Ying, Deng Fanglin, Liang Jiahong, et al. The Verification, Validation and Accreditation Technologies on System Modeling and Simulation[M]. Changsha: National University of Defense Technology Press, 2006. | |
17 | 王鹏. 虚实结合的武器装备试验方法的若干技术研究[D]. 长沙: 国防科技大学, 2018. |
Wang Peng. Research on Some Technologies of Virtual and Real Integrated Equipment Test[D]. Changsha: National University of Defense Technology, 2018. | |
18 | Yuanjun Laili, Zhang Lin, Luo Yongliang. A Pattern-based Validation Method for the Credibility Evaluation of Simulation Models[J]. Simulation, 2020, 6(2): 151-167. |
19 | 刘飞, 马萍, 杨明, 等. 复杂仿真系统可信度量化研究[J]. 哈尔滨工业大学学报, 2007, 39(1): 1-3. |
Liu Fei, Ma Ping, Yang Ming, et al. Research on Credibility Quantification of Complex Simulation Systems[J]. Journal of Harbin Institute of Technology, 2007, 39(1): 1-3. | |
20 | 李伟, 周玉臣, 林圣琳, 等. 仿真模型验证方法综述[J]. 系统仿真学报, 2019, 31(7): 1249-1256. |
Li Wei, Zhou Yuchen, Lin Shenglin, et al. Review of Simulation Model Validation Methods[J]. Journal of System Simulation, 2019, 31(7): 1249-1256. | |
21 | Schruben L W. Establishing the Credibility of Simulations[J]. Simulation, 1980, 34(3): 101-105. |
22 | Beydoun G, Low G, Bogg P. Suitability Assessment Framework of Agent-based Software Architectures[J]. Information and Software Technology, 2013, 55(4): 673-689. |
23 | Buchmann C M, Grossmann K, Schwarz N. How Agent Heterogeneity, Model Structure and Input Data Determine the Performance of an Empirical ABM-a Real-world Case Study on Residential Mobility[J]. Environmental Modelling & Software, 2016, 75: 77-93. |
24 | Acar E. Effect of Error Metrics on Optimum Weight Factor Selection for Ensemble of Metamodels[J]. Expert Systems With Applications, 2015, 42(5): 2703-2709. |
25 | Huang Guangbin, Zhu Qinyu, Siew C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70(1/3): 489-501. |
26 | Li Ni, Dong Liwei, Zhao Luming, et al. A Credibility Evaluation Method for Complex Simulation Systems Based on Interactive Network Analysis[J]. Simulation Modelling Practice and Theory, 2021, 110: 102289. |
27 | Ferson S, Oberkampf W L. Validation of Imprecise Probability Models[J]. International Journal of Reliability and Safety, 2009, 3(1/3): 3-22. |
28 | Li Wei, Chen Wei, Jiang Zhen, et al. New Validation Metrics for Models with Multiple Correlated Responses[J]. Reliability Engineering & System Safety, 2014, 127: 1-11. |
29 | Chan W K V. Interaction Metric of Emergent Behaviors in Agent-based Simulation[C]//Proceedings of the 2011 Winter Simulation Conference (WSC). Piscataway, NJ, USA: IEEE, 2011: 357-368. |
30 | Dornheim H, Brazauskas V. Robust-efficient Credibility Models with Heavy-tailed Claims: A Mixed Linear Models Perspective[J]. Insurance: Mathematics and Economics, 2011, 48(1): 72-84. |
31 | Liang Jiaojiao, Bai Yuebin, Bi Chongguang, et al. Adaptive Routing Based on Bayesian Network and Fuzzy Decision Algorithm in Delay-tolerant Network[C]//2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing. Piscataway, NJ, USA: IEEE, 2013: 690-697. |
32 | Dezfuli H, Kelly D, Smith C, et al. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis[EB/OL]. (2009-06-01)[2022-10-29]. . |
33 | 张淑丽, 叶满昌. 导弹武器系统仿真可信度评估方法研究[J]. 计算机仿真, 2006, 23(5): 48-52. |
Zhang Shuli, Ye Manchang. Simulation Credibility Evaluation Method for Missile Weapon System[J]. Computer Simulation, 2006, 23(5): 48-52. | |
34 | 林圣琳. 面向复杂仿真的评估与优化方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Lin Shenglin. Complex Simulation-oriented Assessment and Optimization Methods[D]. Harbin: Harbin Institute of Technology, 2020. | |
35 | 刘翠翠. 建模与仿真的VV&A方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
Liu Cuicui. Research on VV&A Methods of the Modeling and Simulation[D]. Harbin: Harbin Engineering University, 2012. | |
36 | Ramin H, Krishnan E N, Annadurai G, et al. Transient Sensor Errors and Their Impact on Fixed-bed Regenerator (FBR) Testing Standards[J]. Science and Technology for the Built Environment, 2021, 27(5): 656-678. |
37 | Ren Yongjun, Qi Jian, Liu Yepeng, et al. Integrity Verification Mechanism of Sensor Data Based on Bilinear Map Accumulator[J]. ACM Transactions on Internet Technology, 2021, 21(1): 5. |
38 | Townend S, Venters P, Lau C C, et al. Trusted Digital Spaces Through Timely Reliable and Personalized Provenance[C]//15th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing Workshops, 2012: 136-141. |
39 | 汪洁. THz波大气传输衰减特性研究[D]. 南京: 南京信息工程大学, 2017. |
Wang Jie. The Research on Atmospheric Transmission and Attenuation Characteristics of THz Wave[D]. Nanjing: Nanjing University of Information Science & Technology, 2017. | |
40 | 文静, 袁家斌, 李宁伟. 面向大数据节点的动态可信度评估模型[J]. 江苏科技大学学报(自然科学版), 2019, 33(6): 75-81. |
Wen Jing, Yuan Jiabin, Li Ningwei. Dynamic Credibility Evaluation Model Based on Big Data Nodes[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2019, 33(6): 75-81. | |
41 | 李嘉, 洪珂一, 熊琭. 关于网络服务数据传输可信度评估仿真[J]. 计算机仿真, 2018, 35(2): 330-333, 401. |
Li Jia, Hong Keyi, Xiong Lu. Simulation of Reliability Evaluation of Network Service Data Transmission[J]. Computer Simulation, 2018, 35(2): 330-333, 401. | |
42 | 杜文振, 陈海明, 李栋, 等. 基于综合链路质量评估的传感器网络重传机制研究[J]. 高技术通讯, 2016, 26(8): 750-760. |
Du Wenzhen, Chen Haiming, Li Dong, et al. Research on WSNs' Retransmission Strategy Based on Comprehensive Assessment of Link Quality[J]. Chinese High Technology Letters, 2016, 26(8): 750-760. | |
43 | Zhang Lin, Liu Ying, Yuanjun Laili, et al. Model Maturity Towards Modeling and Simulation: Concepts, Index System Framework and Evaluation Method[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2020, 11(3): 2040001. |
[1] | 赵坦, 吴琳, 陶九阳, 李帅. 元宇宙概念及其军事运用[J]. 系统仿真学报, 2023, 35(7): 1405-1420. |
[2] | 杨帆, 马萍, 李伟, 杨明. 数字孪生体可信度评估过程及指标研究[J]. 系统仿真学报, 2023, 35(2): 350-358. |
[3] | 鹿国伟, 陶学强, 段德光, 李昊, 张泽瑞, 陈恩. 战术级医疗救治装备运用效能建模仿真研究[J]. 系统仿真学报, 2023, 35(1): 190-201. |
[4] | 古鹏飞, 张霖, 陈真, 叶俊杰. 基于X语言的起飞场景民机协同设计与仿真一体化方法[J]. 系统仿真学报, 2022, 34(5): 929-943. |
[5] | 李伟, 张欢, 马萍, 杨明. 云仿真系统可信度评估问题探讨[J]. 系统仿真学报, 2022, 34(4): 679-687. |
[6] | 李伯虎, 柴旭东, 张霖, 卿杜政, 施国强, 林廷宇, 郭丽琴, 杨晨, 谷牧, 贾政轩, 公慧, 唐震. 面向智慧物联网的新型嵌入式仿真技术研究[J]. 系统仿真学报, 2022, 34(3): 419-441. |
[7] | 施国强, 刘泽伟, 林廷宇, 徐钊, 杨星熠, 郭丽琴, 贾政轩. 面向复杂产品建模与仿真系统的开放式云架构设计[J]. 系统仿真学报, 2022, 34(3): 442-451. |
[8] | 张霖, 王昆玉, 赖李媛君, 任磊. 基于建模仿真的体系工程[J]. 系统仿真学报, 2022, 34(2): 179-190. |
[9] | 王磊, 孙晋海, 李拓键. 基于SIS模型的锻炼获益感知传播建模与仿真[J]. 系统仿真学报, 2022, 34(12): 2566-2574. |
[10] | 张连怡, 沈喜生, 卿杜政, 张晗, 周敏, 王喜富. 基于信息熵的复杂作战网络动态演化研究[J]. 系统仿真学报, 2022, 34(12): 2605-2618. |
[11] | 赖启平, 肖谭南, 李东晟, 沈沉. 基于微分神经网络的风电机群低电压穿越特性建模[J]. 系统仿真学报, 2022, 34(12): 2546-2556. |
[12] | 徐公国, 蔡利兵, 杜配冰, 刘钰. 复杂环境下多探测传感器协同定位优化布站建模仿真研究[J]. 系统仿真学报, 2022, 34(10): 2171-2180. |
[13] | 郑菱莎, 姜兵, 赵喆, 杨朝旭. 航空复杂嵌入式系统时间性能仿真分析技术研究[J]. 系统仿真学报, 2021, 33(6): 1489-1499. |
[14] | 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007. |
[15] | 初阳, 刘志, 窦林涛. 面向大尺度战场的飞行机动建模仿真技术[J]. 系统仿真学报, 2021, 33(3): 613-621. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||