系统仿真学报 ›› 2021, Vol. 33 ›› Issue (12): 2854-2863.doi: 10.16182/j.issn1004731x.joss.21-FZ0772

• 仿真建模理论与方法 • 上一篇    下一篇

基于深度学习的晶体性质预测研究

王步维1, 王敏2, 范谦1, 王雅男1, 章涵文1, 乐云亮1,*   

  1. 1.扬州大学 信息工程学院,江苏 扬州 225127;
    2.河北科技大学 信息科学与工程学院,河北 石家庄 050018
  • 收稿日期:2021-06-13 修回日期:2021-07-29 出版日期:2021-12-18 发布日期:2022-01-13
  • 通讯作者: 乐云亮(1989-),男,博士,讲师,研究方向为机器学习,自旋电子学和电离辐射损伤等。E-mail:yueyunliang@yzu.edu.cn
  • 作者简介:王步维(1997-),男,硕士生,研究方向为磁性半导体和人工智能。E-mail:mz120190680@yzu.edu.cn
  • 基金资助:
    江苏省青年基金(BK20190878); 江苏省高等学校自然科学研究面上项目(19KJB510062)

Study on Prediction of Crystal Properties Based on Deep Learning

Wang Buwei1, Wang Min2, Fan Qian1, Wang Ya'nan1, zhang hanwen1, Yue Yunliang1,*   

  1. 1. College of Information Engineering, Yangzhou University, Yangzhou 225127, China;
    2. School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • Received:2021-06-13 Revised:2021-07-29 Online:2021-12-18 Published:2022-01-13

摘要: 使用传统的机器学习方法预测晶体性质需要进行复杂的特征工程。为了绕过耗时的特征工程,使用基于深度学习技术的元素网络、化学计量比的表征学习、基于注意力的成分限制网络和晶体图卷积神经网络对晶体的形成能、平均每个原子的总能量、带隙和费米能进行模拟。将残差学习引入晶体图卷积神经网络中,提出了一种晶体图卷积残差神经网络。在网络中增加隐藏层的层数和隐藏层的节点个数,通过残差连接的方式连接各个隐藏层,同时加入BatchNorm层进行归一化。经测试发现,相比于晶体图卷积神经网络,晶体图卷积残差神经网络对4种物理量预测的精度提升了1.3%~4.8%,有利于对理想晶体材料进行快速和准确的预测。

关键词: 深度学习, 晶体图卷积, 残差学习, 晶体性质

Abstract: Predicting crystal properties using traditional machine learning methods requires complex feature engineering. In order to bypass time-consuming feature engineering, element network (ElemNet), representation learning from stoichiometry (Roost), compositionally-restricted attention-based network (CrabNet) and crystal graph convolution neural network (CGCNN) based on deep learning technology are used to simulate the formation energy, total energy per atom, band gap, and Fermi energy of crystal. The residual learning is introduced into CGCNN, and a crystal graph convolution residual neural network (CGCRN) is proposed. In the CGCRN, the number of hidden layers and the number of nodes in the hidden layers are increased, and the hidden layers are connected by residual connection. Meanwhile, the BatchNorm layers are added for normalization. Compared with CGCNN, the prediction accuracy of 4 physical quantities using CGCRN has increased by 1.3%~4.8%, which is conducive to rapid and accurate prediction of ideal crystal materials.

Key words: deep learning, crystal graph convolution, residual learning, crystal properties

中图分类号: