系统仿真学报 ›› 2017, Vol. 29 ›› Issue (11): 2618-2623.doi: 10.16182/j.issn1004731x.joss.201711003

• 仿真建模理论与方法 • 上一篇    下一篇

基于卷积神经网络的深度图姿态估计算法研究

王松1, 刘复昌2, 黄骥2, 许威威3, 董洪伟1   

  1. 1.江南大学,江苏 无锡 214122;
    2.杭州师范大学,浙江 杭州 311121;
    3.浙江大学,浙江 杭州 310058
  • 收稿日期:2016-05-08 发布日期:2020-06-05
  • 作者简介:王松(1991-),男,安徽阜阳,硕士生,研究方向为深度学习和计算机图形图像;刘复昌(1982-),男,江苏南京,博士,讲师,研究方向为计算机图形图像与机器学习。
  • 基金资助:
    国家自然科学基金青年科学项目(61502133), 浙江省自然科学基金一般项目(LY16F020029)

Pose Estimation Using Convolutional Neural Network with Synthesis Depth Data

Wang Song1, Liu Fuchang2, Huang Ji2, Xu Weiwei3, Dong Hongwei1   

  1. 1. Jiangnan University, Wuxi 214122, China;
    2. Hangzhou Normal University, Hangzhou 311121, China;
    3. Zhejiang University,Hangzhou 310058, China
  • Received:2016-05-08 Published:2020-06-05

摘要: 随着深度相机的应用,三维场景的重建越来越简单、快速。从单视角的深度场景图像中检索出物体还是比较困难,特别是物体的姿态估计。提出了一种基于卷积神经网络的深度图像姿态估计算法。该算法采用了回归估计来实现姿态的估计。通过3D模型合成大量不同姿态的深度图像样本,从而解决回归估计需要稠密采样的训练数据问题。对于不同类别的物体,分别用线性回归估计来拟合姿态函数。在基于LeNet-5模型上修改了卷积神经网络的结构,使得该网络适用于回归估计。实验结果表明:我们的方法取得了平均误差约4.3°的估计结果,优于其他文献的方法。

关键词: 姿态估计, 卷积神经网络, 深度图像, 场景重建

Abstract: 3D scenes can be reconstructed more easily and rapidly with depth camera. However, it is difficult to retrieve items in 3D scenes from a single view depth image, especially for the pose estimation. In this paper, we present a method of pose estimation using convolutional neural network with synthesis depth data, which predicts the items' pose in 3D scenes by regression. This is achieved by (i) synthesizing large amount of depth images with different pose for linear regression using 3D model, (ii) designing a class-dependent linear regression framework, which estimates the object's pose from different classes separately, (iii) reforming LeNet-5 model by representing the loss layer as a linear regression form. The proposed algorithm is demonstrated on different data sets and achieves higher accuracy (average error 4.3°) than other algorithms.

Key words: pose estimation, convolutional neural networks, depth images, scene reconstruction

中图分类号: