系统仿真学报 ›› 2017, Vol. 29 ›› Issue (5): 1049-1056.doi: 10.16182/j.issn1004731x.joss.201705016

• 仿真应用工程 • 上一篇    下一篇

水产养殖环境因子数据动力学分析与智能预测

钟杰卓1, 涂志刚2, 杜文才1, 吴慰1,3   

  1. 1.海南大学信息科学技术学院,海南 海口 570228;
    2.海南省海洋与渔业科学院,海南 海口 570206;
    3.中国科学院三亚深海科学与工程研究所,海南 三亚 572000
  • 收稿日期:2015-05-10 修回日期:2015-07-06 出版日期:2017-05-08 发布日期:2020-06-03
  • 作者简介:钟杰卓(1981-),女,河北卢龙,硕士,高工,研究方向为分布式计算、大数据挖掘。
  • 基金资助:
    海南省自然科学基金(20166216, 614220),南海海洋资源利用国家重点实验室(海南大学)开放项目子课题(2016013B)

Dynamics Analysis and Intelligent Prediction of Aquaculture Data

Zhong Jiezhuo1, Tu Zhigang2, Du Wencai1, Wu Wei1,3   

  1. 1. College of Information Science and Technology, Hainan University, Haikou 570228, China;
    2. Hainan Academy of Oceam and Fisheries Sciences, Haikou 570206, China;
    3. Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
  • Received:2015-05-10 Revised:2015-07-06 Online:2017-05-08 Published:2020-06-03

摘要: 进行水质环境因素分析对水产养殖的效益极为重要。研究水体因素的三个主要参数:水温、pH值以及溶解氧。针对检测仪取样的数据存在缺失、不准确等问题,通过高阶曲线插值较好地修复了数据,同时运用滤波方法划分了系统误差以及参数的自身节律;对不同水层、时间的参数分析,较好地吻合了实际水文情况,为工程养殖提供了可靠的依据;通过引入径向基函数神经网络方法跟踪主要参数的特征,弥补了非线性多项式插值的不足,实际数据证明了该方法全局跟踪有效以及局部节律刻画程度精细。

关键词: 水产养殖水质, 动力学分析, 非线性预测, 人工智能神经网络

Abstract: Data analysis on environmental factors data is crucial to aquaculture, in which three significant parameters were discussed, they are temperature, PH and dissolved oxygen. Fixing some missing data and inaccurate records in the sampling process by high-order curve fitting. Meanwhile, the use of filtering method was adopted to divide systematic errors and rhythms inside parameters. Analysis from different water layers and different time suited the true environment well, which provided effective references for engineering problems. Radial Basis Function Neural Networks was well applied in tracking the parameters trend both globally and locally.

Key words: aquaculture quality, dynamic analysis, nonlinear prediction, artificial neural networks

中图分类号: