系统仿真学报 ›› 2019, Vol. 31 ›› Issue (8): 1646-1652.doi: 10.16182/j.issn1004731x.joss.17-0388

• 仿真应用工程 • 上一篇    下一篇

基于稳健Capon波束形成的合成孔径超声成像算法

郭业才1,2, 季晓星1   

  1. 1. 南京信息工程大学电子与信息工程学院,江苏 南京 210044;
    2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044
  • 收稿日期:2017-08-09 修回日期:2017-10-10 发布日期:2019-12-12
  • 作者简介:郭业才(1962-),男,安徽安庆,博士,教授,博导,研究方向为通信信号处理、自适应盲均衡技术。
  • 基金资助:
    国家自然科学基金(61673222),江苏省高校自然科学基金(13KJA510001),江苏高校品牌专业建设项目(PPZY2015B134),江苏省教育教学改革项目(2017JSJG168)

Synthetic Aperture Ultrasonic Imaging Algorithm Based on Robust Capon Beamforming in Eigenspace

Guo Yecai1,2, Ji Xiaoxing1   

  1. 1. College of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;;
    2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment, Nanjing University of Information Science & Technology, Nanjing 210044, China;
  • Received:2017-08-09 Revised:2017-10-10 Published:2019-12-12

摘要: 为降低合成孔径聚焦(SAF)波束的主瓣宽度和旁瓣幅度,提高超声成像算法稳健性以及成像的分辨率和对比度,出了基于特征空间稳健Capon波束形成的合成孔径超声成像算法。该算法在最小方差(MV)原则下,利用Toeplitz性质实现干扰-噪声协方差矩阵重构,使其保持非奇异;利用特征空间中信号子空间和椭圆型约束集,约束导向矢量误差;通过拉格朗日数乘法和二分法求得最优权向量,利用最优权向量对回波数据进行加权处理、成像。仿真结果表明:该算法得到的超声图像在抗干扰、对比度及分辨率方面表现更优,有效提高了超声图像的质量。

关键词: 特征空间, 稳健Capon波束形成, SAF波束形成, 超声成像

Abstract: In order to lower the main lobe width and side lobe amplitude of SAF beams ,improve the robustness of ultrasound imaging algorithm, resolution, contrast in images, a synthetic aperture ultrasonic imaging algorithm based on robust Capon beamforming in eigenspace is proposed. Under the principle of MV, this algorithm firstly uses the Toeplitz to realize the reconstruction of the interference-noise covariance matrix and keep it nonsingular. Secondly, the vector error is constrained by the signal subspace and the elliptic constraint set in feature space. Finally, the optimal weight vector which is used to weight and image the echo data is obtained by Lagrange multiplier method and dichotomy. The simulation results show that ultrasonic image obtained by this method performs better in anti-interference, contrast and resolution and improves the quality of ultrasonic images effectively.

Key words: Eigenspace, robust Capon beamforming, SAF beamforming, ultrasonic imaging

中图分类号: