系统仿真学报 ›› 2019, Vol. 31 ›› Issue (11): 2562-2568.doi: 10.16182/j.issn1004731x.joss.19-FZ0281

• 短文 • 上一篇    

基于孪生卷积网络的高速列车转向架故障辨识

吴昀璞, 金炜东, 任俊箫   

  1. 西南交通大学电气工程学院,四川 成都 610031
  • 收稿日期:2019-05-19 修回日期:2019-07-04 出版日期:2019-11-10 发布日期:2019-12-13
  • 作者简介:吴昀璞(1991-),男,江苏,博士生,研究方向为深度学习,故障诊断等;金炜东(1959-),男,安徽,博士,教授,博导,研究方向为智能信息处理,系统仿真与优化方法等;任俊箫(1991-),男,四川,博士生,研究方向为故障诊断等。

Fault Identification of High-Speed Train Bogie Based on Siamese Convolutional Neural Network

Wu Yunpu, Jin Weidong, Ren Junxiao   

  1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2019-05-19 Revised:2019-07-04 Online:2019-11-10 Published:2019-12-13

摘要: 高速列车转向架关键构件的性能退化与故障会危及列车运行安全。针对高速列车故障辨识中面临的监测数据高维度和样本稀缺问题,提出一种基于孪生卷积神经网络的转向架故障类型辨识方法,利用深度残差一维卷积网络进行多通道振动监测信号的特征提取与融合,使用孪生结构获得基于特征距离的样本相似度,依据支撑集典型数据样本进行故障类型辨识。实验结果表明,该方法可以在仅有少量样本的情况下,实现高速列车转向架多种故障类型辨识,提高了在小样本数据下的故障类型识别准确率。

关键词: 高速列车转向架, 故障辨识, 小样本学习, 孪生网络

Abstract: The performance degradation and failure of high-speed train bogie components will threaten the operation security of train. This paper proposes a fault type identification method based on siamese convolutional neural network to address the scarcity of data and the high-dimension of monitoring signals. Deep residual network with one-dimension convolution layers is employed for features extraction and fusion of vibration signals from multiple sensors. The siamese structure is employed to obtain the similarities between samples. Fault types are identified by ranking similarities in the support set. The experimental results show that the proposed method can identify the fault types with only a few training samples and improve the accuracy compared with conventional methods.

Key words: high-speed train bogie, fault identification, few-shot learning, siamese network

中图分类号: