[1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature (S1476-4687), 2015, 521(7553): 436. [2] Schmidhuber J.Deep learning in neural networks: An overview[J]. Neural networks (S1879-2782), 2015, 61: 85-117. [3] Liu R, Yang B, Zio E, et al.Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing (S1096-1216), 2018, 108: 33-47. [4] 吴昀璞, 金炜东, 黄颖坤. 基于多域融合CNN的高速列车转向架故障检测[J]. 系统仿真学报, 2018, 30(11): 4492-4497. Wu Yunpu, Jin Weidong, Huang Yingkun.High Speed Train Bogie Fault Diagnosis Based on Multi-domain Fusion CNN[J]. Journal of System Simulation, 2018, 30(11): 4492-4497. [5] Hu H, Tang B, Gong X, et al.Intelligent fault diagnosis of the high-speed train with big data based on deep neural networks[J]. IEEE Transactions on Industrial Informatics (S1941-0050), 2017, 13(4): 2106-2116. [6] Peng D, Liu Z, Wang H, et al.A Novel Deeper One-Dimensional CNN With Residual Learning for Fault Diagnosis of Wheelset Bearings in High-Speed Trains[J]. IEEE Access (S2169-3536), 2019, 7: 10278-10293. [7] Wu Y, Jin W, Ren J, et al. A multi-perspective architecture for high-speed train fault diagnosis based on variational mode decomposition and enhanced multi-scale structure[J/OL]. Applied Intelligence (S1573-7497), 2019. https://link.springer.com/article/ 10.1007/s10489-019-01483-8. [8] Wang Y, Yao Q.Generalizing from a Few Examples: A Survey on Few-Shot Learning[J]. arXiv preprint (S2331-8422) arXiv: 1904.05046, 2019. [9] Lake B, Salakhutdinov R, Gross J, et al.One shot learning of simple visual concepts[C]. Proceedings of the Annual Meeting of the Cognitive Science Society. Boston, USA: Curran Associates, Inc, 2011. [10] Lake B M, Salakhutdinov R R, Tenenbaum J.One-shot learning by inverting a compositional causal process[C]. Advances in neural information processing systems. Lake Tahoe, USA: Curran Associates, Inc., 2013: 2526-2534. [11] Mao J, Wei X, Yang Y, et al.Learning like a child: Fast novel visual concept learning from sentence descriptions of images[C]. Proceedings of the IEEE international conference on computer vision. Santiago, Chile: IEEE, 2015: 2533-2541. [12] Koch G, Zemel R, Salakhutdinov R.Siamese neural networks for one-shot image recognition[C]. ICML deep learning workshop. Lille, France: ICML, 2015: 2. [13] Latorre Iglesias E, Thompson D J, Smith M, et al.Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise[J]. International Journal of Rail Transportation (S2324-8386), 2017, 5(2): 87-109. [14] Lu Y, Xiang P, Dong P, et al.Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis (S1350-6307), 2018, 89: 222-241. [15] Haixiang G, Yijing L, Shang J, et al.Learning from class-imbalanced data: Review of methods and applications[J]. Expert Systems with Applications (S1873-6793), 2017, 73: 220-239. [16] Bromley J, Guyon I, LeCun Y, et al. Signature verification using a" siamese" time delay neural network[C]. Advances in neural information processing systems. London, England: MIT press, 1994: 737-744. [17] He K, Zhang X, Ren S, et al.Deep residual learning for image recognition[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA: IEEE, 2016: 770-778. [18] Zhang W, Li C, Peng G, et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing (S1096-1216), 2018, 100: 439-453. |