系统仿真学报 ›› 2025, Vol. 37 ›› Issue (4): 910-921.doi: 10.16182/j.issn1004731x.joss.23-1476

• 论文 • 上一篇    下一篇

公共卫生事件下交叉感染风险的车辆路径优化研究

史晓东1, 郭永城1, 马铭杞1, 潘嘉睿2   

  1. 1.河南财经政法大学 电子商务与物流管理学院,河南 郑州 450046
    2.华中科技大学 计算机科学与技术学院,湖北 武汉 430074
  • 收稿日期:2023-12-05 修回日期:2024-01-17 出版日期:2025-04-17 发布日期:2025-04-16
  • 第一作者简介:史晓东(1980-),男,副教授,博士,研究方向为大数据、人工智能。
  • 基金资助:
    国家自然科学基金(U22A2027);河南省科技攻关项目(222102210142)

Optimization of Vehicle Routing for Cross-infection Risk in the Epidemic

Shi Xiaodong1, Guo Yongcheng1, Ma Mingqi1, Pan Jiarui2   

  1. 1.School of E-commerce and Logistics Management, Henan University of Economics and Law, Zhengzhou 450046, China
    2.School of Computer Science&Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2023-12-05 Revised:2024-01-17 Online:2025-04-17 Published:2025-04-16

摘要:

针对公共卫生事件中物流配送路径优化所面临的安全风险挑战,研究了考虑交叉感染风险的车辆路径问题。将疫区中物流活动可能引发的交叉传染风险融入物流配送模型中,建立以交叉感染风险和成本为目标的物流车辆配送模型。设计了一种改进的遗传算法用于模型优化求解,并在融合了混沌初始化种群与自适应交叉、变异操作的基础上,进一步提出了一种邻居互斥算子,提升了算法的全局搜索能力,防止过早收敛,保障了染色体种群的多样性。仿真结果验证了模型和优化算法在解决公共卫生事件下物流配送问题的有效性和可行性。

关键词: 应急物资配送, 交叉感染风险, 双目标物流路径优化, 混沌自适应遗传算法, 权重加权

Abstract:

In view of the safety risks associated with logistics distribution route optimization during public health emergencies, this paper investigates the vehicle routing problem by incorporating the risk of cross-infection, integrates the cross-infection risk caused by logistics activities in the epidemic area into the logistics distribution model, and establishes a logistics vehicle distribution model with the goal of cross-infection risk and cost. An improved genetic algorithm is designed for model optimization and solution. Based on the integration of chaos initialization population and adaptive crossover and mutation operations, a neighbor exclusion operator is further proposed to enhance the global search ability of the algorithm, prevent premature convergence, and ensure the diversity of chromosome population. Through numerical simulation and experimental comparative analysis, it is verified that the model and optimization algorithm established in this paper are effective and feasible in solving logistics distribution problems under public health events.

Key words: emergency supplies distribution, risk of cross infection, dual-objective logistics routing optimization, chaotic adaptive genetic algorithm, weight weighting

中图分类号: