1 |
Sheng Jiapeng, Chen Yanyun, Fang Xing, et al. Bio-inspired Rhythmic Locomotion for Quadruped Robots[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6782-6789.
|
2 |
Bledt G, Powell M J, Katz B, et al. MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 2245-2252.
|
3 |
Jin Yongbin, Liu Xianwei, Shao Yecheng, et al. High-speed Quadrupedal Locomotion by Imitation-relaxation Reinforcement Learning[J]. Nature Machine Intelligence, 2022, 4(12): 1198-1208.
|
4 |
Norby J, Johnson A M. Fast Global Motion Planning for Dynamic Legged Robots[C]//2020 IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 3829-3836.
|
5 |
Miki Takahiro, Lee Joonho, Hwangbo Jemin, et al. Learning Robust Perceptive Locomotion for Quadrupedal Robots in the Wild[J]. Science Robotics, 2022, 7(62): eabk2822.
|
6 |
Urbain Gabriel, Barasuol Victor, Semini Claudio, et al. Stance Control Inspired by Cerebellum Stabilizes Reflex-based Locomotion on HyQ Robot[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 6127-6133.
|
7 |
Umberger B R, Martin P E. Mechanical Power and Efficiency of Level Walking with Different Stride Rates[J]. Journal of Experimental Biology, 2007, 210(18): 3255-3265.
|
8 |
Muraro A, Chevallereau C, Aoustin Y. Optimal Trajectories for a Quadruped Robot with Trot, Amble and Curvet Gaits for Two Energetic Criteria[J]. Multibody System Dynamics, 2003, 9(1): 39-62.
|
9 |
Srinivasan M, Ruina A. Computer Optimization of a Minimal Biped Model Discovers Walking and Running[J]. Nature, 2006, 439(7072): 72-75.
|
10 |
di Prampero P E. The Energy Cost of Human Locomotion on Land and in Water[J]. International Journal of Sports Medicine, 1986, 7(2): 55-72.
|
11 |
Hoyt D F, Taylor C R. Gait and the Energetics of Locomotion in Horses[J]. Nature, 1981, 292(5820): 239-240.
|
12 |
Li Qi, Qian Letian, Wang Shuhan, et al. Towards Generation and Transition of Diverse Gaits for Quadrupedal Robots Based on Trajectory Optimization and Whole-body Impedance Control[J]. IEEE Robotics and Automation Letters, 2023, 8(4): 2389-2396.
|
13 |
Koo I M, Tran Duc Trong, Haeng Lee Yoon, et al. Biologically Inspired Gait Transition Control for a Quadruped Walking Robot[J]. Autonomous Robots, 2015, 39(2): 169-182.
|
14 |
Saraf Prathamesh, Sarkar Abhishek, Javed Arshad. Terrain Adaptive Gait Transitioning for a Quadruped Robot Using Model Predictive Control[C]//2021 26th International Conference on Automation and Computing (ICAC). Piscataway: IEEE, 2021: 1-6.
|
15 |
Shang Linlin, Li Zhaosheng, Wang Wei, et al. Smooth Gait Transition Based on CPG Network for A Quadruped Robot[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway: IEEE, 2019: 358-363.
|
16 |
Fukui Takahiro, Fujisawa Hisamu, Otaka Kotaro, et al. Autonomous Gait Transition and Galloping over Unperceived Obstacles of a Quadruped Robot with CPG Modulated by Vestibular Feedback[J]. Robotics and Autonomous Systems, 2019, 111: 1-19.
|
17 |
Santos Cristina P, Matos Vítor. Gait Transition and Modulation in a Quadruped Robot: A Brainstem-like Modulation Approach[J]. Robotics and Autonomous Systems, 2011, 59(9): 620-634.
|
18 |
Dai Owaki, Ishiguro Akio. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping[J]. Scientific Reports, 2017, 7(1): 277.
|
19 |
陈久朋, 陈治帆, 伞红军, 等. 中枢模式发生器与足端轨迹的非线性映射[J]. 仪器仪表学报, 2024, 45(4): 258-271.
|
|
Chen Jiupeng, Chen Zhifan, Hongjun San, et al. Nonlinear Mapping Between Central Pattern Generator and Foot Trajectory[J]. Chinese Journal of Scientific Instrument, 2024, 45(4): 258-271.
|
20 |
陈久朋, 李春磊, 伞红军, 等. 基于模型的四足机器人步态转换控制研究[J]. 农业机械学报, 2024, 55(3): 431-440, 451.
|
|
Chen Jiupeng, Li Chunlei, Hongjun San, et al. Model Based Gait Transition Control for Quadruped Robots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(3): 431-440, 451.
|
21 |
张秀丽, 王琪, 黄森威, 等. 一种多模型融合的仿猎豹四足机器人复杂运动控制方法[J]. 机器人, 2022, 44(6): 682-693, 707.
|
|
Zhang Xiuli, Wang Qi, Huang Senwei, et al. A Multi-model Fusion Based Complex Motion Control Approach for a Cheetah-mimicking Quadruped Robot[J]. Robot, 2022, 44(6): 682-693, 707.
|
22 |
Wang Jiayi, Chatzinikolaidis I, Mastalli C, et al. Automatic Gait Pattern Selection for Legged Robots[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [S.l.]: IEEE, 2020: 3990-3997.
|
23 |
王琪, 张秀丽, 江磊, 等. 具有2DOF铰接式躯干的仿猎豹四足奔跑机器人[J]. 机器人, 2022, 44(3): 257-266.
|
|
Wang Qi, Zhang Xiuli, Jiang Lei, et al. A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk[J]. Robot, 2022, 44(3): 257-266.
|
24 |
钱伟, 王志瑞, 苏波, 等. 变刚度四足机器人的连续型仿生脊柱设计[J]. 中南大学学报(自然科学版), 2023, 54(8): 3112-3121.
|
|
Qian Wei, Wang Zhirui, Su Bo, et al. Mechanical Design of a Variable Stiffness Continuous Bionic Spine for a Quadruped Robot[J]. Journal of Central South University(Science and Technology), 2023, 54(8): 3112-3121.
|
25 |
Xi Weitao, Yesilevskiy Y, Remy C D. Selecting Gaits for Economical Locomotion of Legged Robots[J]. The International Journal of Robotics Research, 2016, 35(9): 1140-1154.
|
26 |
Smit-Anseeuw N, Gleason R, Vasudevan R, et al. The Energetic Benefit of Robotic Gait Selection——A Case Study on the Robot RAMone[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 1124-1131.
|
27 |
Griffin T M, Kram R, Wickler S J, et al. Biomechanical and Energetic Determinants of the Walk-trot Transition in Horses[J]. Journal of Experimental Biology, 2004, 207(24): 4215-4223.
|
28 |
Norby J, Yang Y, Tajbakhsh A, et al. Quad-SDK: Full Stack Software Framework for Agile Quadrupedal Locomotion[C]//ICRA Workshop on Legged Robots. [S.l. : s.n.], 2022.
|