系统仿真学报 ›› 2024, Vol. 36 ›› Issue (12): 2824-2833.doi: 10.16182/j.issn1004731x.joss.24-FZ0790

• 论文 • 上一篇    

考虑局部特征的无人机集群关键节点识别方法

石成泷1, 华翔1, 王东1, 张金金2, 蒋天启3, 党元章3   

  1. 1.西安工业大学 机电工程学院,陕西 西安 710021
    2.西安工业大学 兵器科学与技术学院,陕西 西安 710021
    3.西安工业大学 电子信息工程学院,陕西 西安 710021
  • 收稿日期:2024-07-19 修回日期:2024-09-29 出版日期:2024-12-20 发布日期:2024-12-20
  • 通讯作者: 华翔
  • 第一作者简介:石成泷(1997-),男,博士生,研究方向为无人机集群协同控制。
  • 基金资助:
    陕西省重点研发计划(2023-YBGY-227);陕西省自然科学基础研究计划(2023-JC-QN-0705);西安市科技计划(2022JH-RYFW-0138);碑林区科技计划(GX2216)

Critical Node Identification Method for Unmanned Aerial Vehicle Cluster Considering Localized Features

Shi Chenglong1, Hua Xiang1, Wang Dong1, Zhang Jinjin2, Jiang Tianqi3, Dang Yuanzhang3   

  1. 1.School of Mechatromic Engineering, Xi'an Technological University, Xi'an 710021, China
    2.School of Armament Science and Technology, Xi'an Technological University, Xi'an 710021, China
    3.School of Electronic Information Engineering, Xi'an Technological University, Xi'an 710021, China
  • Received:2024-07-19 Revised:2024-09-29 Online:2024-12-20 Published:2024-12-20
  • Contact: Hua Xiang

摘要:

针对无人机集群关键节点识别方法注重网络全局,忽略节点与其局部特征之间关联性的问题,提出一种考虑局部特征的无人机集群关键节点识别方法。基于复杂网络理论构建无人机集群网络模型;引入拉普拉斯能量评估两跳范围内节点的重要程度,结合信息熵评估特定模体中节点的重要程度,以综合识别关键节点。结果表明:该方法识别的关键节点表现出较好的区分度,验证了其有效性,相比对比方法,在连续失效下抗毁性下降趋势显著,验证了其准确性。

关键词: 无人机集群, 关键节点, 局部特征, 拉普拉斯能量, 模体

Abstract:

Aiming at the problem that the UAV cluster critical node identification methods focus on the global network and ignore the correlation between nodes and their local features, a critical nodes identification method for unmanned aerial vehicle cluster considering local features is proposed. An unmanned aerial vehicle cluster network model is constructed based on complex network theory. The Laplacian energy is introduced to evaluate the importance of node within two hops, and information entropy is combined to evaluate the importance of node in a specific motif to comprehensive identify the critical nodes. Simulation results demonstrate that this method identifies critical nodes that perform well in terms of differentiation, validating its effectiveness. This method exhibits a significant improvement in resilience against continuous failures compared to the comparative methods, further confirming its superiority.

Key words: UAV cluster, critical nodes, local features, Laplacian energy, motif

中图分类号: