系统仿真学报 ›› 2024, Vol. 36 ›› Issue (6): 1414-1424.doi: 10.16182/j.issn1004731x.joss.23-0518

• 论文 • 上一篇    下一篇

基于深度强化学习的机器人轴孔装配策略仿真研究

朱子璐1(), 刘永奎1(), 张霖2, 王力翚3, 林廷宇4   

  1. 1.西安电子科技大学 机电工程学院, 陕西 西安 710071
    2.北京航空航天大学 自动化科学与电气工程学院, 北京 100191
    3.瑞典皇家理工学院 生产工程系, 斯德哥尔摩 25175
    4.北京仿真中心 北京市复杂产品先进制造系统工程技术研究中心, 北京 100854
  • 收稿日期:2023-05-05 修回日期:2023-06-23 出版日期:2024-06-28 发布日期:2024-06-19
  • 通讯作者: 刘永奎 E-mail:zilu_zhu@163.com;yongkuiliu@163.com
  • 第一作者简介:朱子璐(2001-),女,本科生,研究方向为人机协作装配、机器人装配技能学习。E-mail:zilu_zhu@163.com
  • 基金资助:
    国家自然科学基金(61973243)

Simulation of Robotic Peg-in-hole Assembly Strategy Based on DRL

Zhu Zilu1(), Liu Yongkui1(), Zhang Lin2, Wang Lihui3, Lin Tingyu4   

  1. 1.School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
    2.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    3.Department of Production Engineering KTH Royal Institute of Technology, Stockholm 25175, Sweden
    4.Beijing Complex Product Advanced Manufacturing Engineering Research Center, Beijing Simulation Center, Beijing 100854, China
  • Received:2023-05-05 Revised:2023-06-23 Online:2024-06-28 Published:2024-06-19
  • Contact: Liu Yongkui E-mail:zilu_zhu@163.com;yongkuiliu@163.com

摘要:

针对现有轴孔装配方法存在的依赖于精确的接触状态模型、数据采集困难、采样效率低、安全性差等问题,提出了一种基于DRL的机器人轴孔装配策略仿真研究方法。搭建了基于ROS-Gazebo机器人轴孔装配仿真环境,提出了基于最小二乘法对力/力矩传感器进行重力补偿的方法;基于RL的范式对轴孔装配问题建模,并提出了一种基于SAC(soft actor-critic)算法的机器人轴孔装配方法;通过ROS建立了仿真环境与深度强化学习算法的通信机制。实验结果表明:该算法能够使机器人自主且柔顺地完成轴孔装配任务,并具有较好的泛化性。

关键词: 轴孔装配, DRL, 柔顺控制, 装配策略仿真, ROS-Gazebo仿真环境

Abstract:

Aiming at the existing peg-in-hole assembly method problems of dependence on accurate contact state models, difficulties in data acquisition, low sampling efficiency, and poor security, a simulation research method for robot peg-in-hole assembly strategy based on DRL is proposed. A simulation environment of robot peg-in-hole assembly based on ROS-Gazebo is built, and a method of gravity compensation for force/torque sensor based on a least square method is proposed. The reinforcement learning paradigm is employed to model the robot peg-in-hole assembly, and a method based on soft actor-critic(SAC) algorithm is proposed. The communication mechanism between the simulation environment and the deep reinforcement learning algorithm is established through ROS. Simulation experiments show that the proposed SAC algorithm enables robots to accomplish the peg-in-hole assembly task autonomously and compliantly with good generalization ability.

Key words: peg-in-hole assembly, DRL, compliance control, assembly strategy simulation, ROS-Gazebo simulation environment

中图分类号: