系统仿真学报 ›› 2020, Vol. 32 ›› Issue (11): 2208-2217.doi: 10.16182/j.issn1004731x.joss.20-FZ0468E
谢伟锋1, 左旭1,2,3
收稿日期:
2020-07-10
修回日期:
2020-08-02
出版日期:
2020-11-18
发布日期:
2020-11-17
Xie Weifeng1, Zuo Xu1,2,3
Received:
2020-07-10
Revised:
2020-08-02
Online:
2020-11-18
Published:
2020-11-17
About author:
Xie Weifeng (1992-),male,Shaoyang,Ph.D.research direction:first principle calculation of magnetism and magnetic materials.
Supported by:
摘要: 巨大的Rashba效应对于自旋电子学的应用至关重要,但很少涉及一维磁性体系,为了探究一维磁性体系Rashba效应的特征和强度,提出了两个钆原子吸附在Z型石墨烯纳米带上的一维磁性结构,通过第一性原理计算方法分析了不同磁态下不同磁化轴方向的Rashba效应以及体系的磁各向异性。结果表明,反铁磁基态下的体系具有很强的Rashba强度和面外磁各向异性能。磁性体系中的Rashba效应需要考虑磁性原子的自旋磁矩。这项工作对设计一维磁性Rashba体系具有重要的意义。
中图分类号:
谢伟锋, 左旭. 两个钆吸附在Z型石墨烯纳米带上的第一性原理研究[J]. 系统仿真学报, 2020, 32(11): 2208-2217.
Xie Weifeng, Zuo Xu. Two Gd Atoms Adsorbed on Zigzag Graphene Nanoribbon:A First-Principles Study[J]. Journal of System Simulation, 2020, 32(11): 2208-2217.
[1] Wolf S A,Awschalom D D,Buhrman R A,et al.Spintronics:A Spin-Based Electronics Vision for the Future[J].Science(S0036-8075),2001,294(5546):1488-1495. [2] Datta S,Das B.Electronic Analog of the Electro-optic Modulator[J].Applied Physics Letters(S0003-6951),1990,56(7):665-667. [3] Awschalom D,Samarth N.Trend:Spintronics without Magnetism[J].Physics(S1943-2879),2009,2:50. [4] Rashba É I.Properties of Semiconductors with an Extremum Loop.I.Cyclotron and Combinational Resonance in a Magnetic Field Perpendicular to the Plane of the Loop[J].Soviet Physics,Solid State(S0038-5654),1960,2:1109. [5] Casella R C.Toroidal Energy Surfaces in Crystals with Wurtzite Symmetry[J].Physical Review Letters(S0031-9007),1960,5(8):371. [6] Bychkov Y A,Rashba É I.Properties of a 2D Electron Gas with Lifted Spectral Degeneracy[J].JETP Letters(S0021-3640),1984,39(2):78. [7] LaShell S,McDougall B,Jensen E.Spin Splitting of an Au(111)Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy[J].Physical Review Letters(S0031-9007),1996,77(16):3419. [8] Moser J,Matos-Abiague A,Schuh D,et al.Tunneling Anisotropic Magnetoresistance and Spin-Orbit Coupling in Fe/GaAs/Au Tunnel Junctions[J].Physical Review Letters(S0031-9007),2007,99(5):056601. [9] Ishizaka K,Bahramy M S,Murakawa H,et al.Giant Rashba-type Spin Splitting in Bulk BiTeI[J].Nature Materials(S1476-1122),2011,10(7):521-526. [10] Krupin O,Bihlmayer G,Starke K,et al.Rashba Effect at Magnetic Metal Surfaces[J].Physical Review B(S2469-9950),2005,71(20):1403. [11] Hu X.Half-Metallic Antiferromagnet as a Prospective Material for Spintronics[J].Advanced Materials(S0935-9648).2012,24(2):294-298. [12] Jungwirth T,Sinova J,Manchon,A,et al.The Multiple Directions of Antiferromagnetic Spintronics[J].Nature Physics(S1745-2473).2018,14(3):200-203. [13] Wu R,Li C,Freeman A J,et al.Structural,Electronic,and Magnetic Properties of Rare-earth Metal Surfaces:Hcp Gd(0001)[J].Physical Review B Condensed Matter(S2469-9950),1991,44(17):9400-9409. [14] Lu Y,Zhou T G,Shao B,et al.Carrier-dependent Magnetic Anisotropy of Gd-adsorbed Graphene[J].Aip Advances(S2158-3226),2016,6(5):055708. [15] Qin,Z,Qin G,Shao B,et al.Unconventional Magnetic Anisotropy in One-dimensional Rashba System Realized by Adsorbing Gd Atom on Zigzag Graphene Nanoribbons[J].Nanoscale(S2040-3364),2017,9(32):11657-11666. [16] Qin Z,Qin G,Shao B,et al.Rashba Spin Splitting and Perpendicular Magnetic Anisotropy of Gd-adsorbed Zigzag Graphene Nanoribbon Modulated by Edge States Under External Electric Fields[J].Physical Review B(S2469-9950),2020,101(1):014451. [17] Zutic I,Fabian J,Sarma S D.Spintronics:Fundamentals and Applications[J].Microelectronics Reliability(S0026-2714),2004,76(2):323-410. [18] Zhang F,Kane C L,Mele E J.Time Reversal Invariant Topological Superconductivity and Majorana Kramers Pairs[J].Physical Review Letters(S0031-9007),2012,111(5):056402. [19] Quay C H L,Hughes T L,Sulpizio J A,et al.Observation of a One-dimensional Spin-orbit Gap in a Quantum Wire[J].Nature Physics(S1745-2473),2010,6(5):336-339. [20] Qi X L,Zhang S C.Topological Insulators and Superconductors[J].Review of Modern Physics(S0034-6861),2011,83(4):1057-1110. [21] Hasan M Z.Colloquium:Topological Insulators[J].Review of Modern Physics(S0034-6861),2010,82(4):3045-3067. [22] Kusakabe K.Possible Nano-spintronics Devices with Graphene as Electron Wave Guides[J].Bulletin of the American Physical Society(S0003-0503),2009. [23] Lado J L,Garcia-Martinez,Fernandez-RossierJ.Edge States in Graphene-like Systems[J].Synthetic Metals(S0379-6779),2015,210:56-67. [24] Tao C,Jiao L,Yazyev O V,et al.Spatially Resolving Edge States of Chiral Graphene Nanoribbons[J].Nature Physics(S1745-2473),2011,7(8):616-620. [25] Barke I,Zheng F,Rügheimer T K,et al.Experimental Evidence for Spin-Split Bands in a One-Dimensional Chain Structure[J].Physical Review Letters(S0031-9007),2007,97(22):226405. [26] Park J,Jung S W,Jung M C,et al.Self-Assembled Nanowires with Giant Rashba Split Bands[J].Physical Review Letters(S0031-9007),2013,110(3):036801. [27] Tapasztó L,Dobrik G,Lambin P,et al.Tailoring the Atomic Structure of Graphene Nanoribbons by Scanning Tunnelling Microscope Lithography[J].Nature nanotechnology(S1748-3387),2008,3(7):397-401. [28] Datta S S,Strachan D R,Khamis S M,et al.Crystallographic Etching of Few-Layer Graphene[J].Nano Letters(S1530-6984),2008,8(7):1912-1915. [29] Chen L,He L,Wang H S,et al.Oriented Graphene Nanoribbons Embedded in Hexagonal Boron Nitride Trenches[J].Nature Communications(S2041-1723),2017,8:14703. [30] Chl P E B O.Projector Augmented-Wave Method[J].Physical Review B Condens Matter(S2469-9950),1994,50(24):17953-17979. [31] Kresse G,Furthmüller J.Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J].Computational Materials Science(S0927-0256),1996,6(1):0-50. [32] Perdew J P,Burke K,Ernzerhof M.Generalized Gradient Approximation Made Simple[J].Physical Review Letters(S0031-9007),1996,77(18):3865-3868. [33] Dudarev S L,Botton G A,Savrasov S Y,et al.Electron-energy-loss Spectra and The Structural Stability of Nickel Oxide:An LSDA+U study[J].Physical Review B(S2469-9950),1998,57(3):1505-1509. [34] Anisimov V I,Gunnarsson O.Density-functional Calculation of Effective Coulomb Interactions in Metals[J].Physical Review B(S2469-9950),1991,43(10):7570. [35] Larson P,Lambrecht W R L.Electronic Structure of Gd Pnictides[J].Physical Review B(S2469-9950),2006,74(8). [36] Makov G,Payne M C.Periodic Boundary Conditions in [37] Krychowski D,Kaczkowski J,Lipinski S.Kondo Effect of a Cobalt Adatom on a Zigzag Graphene Nanoribbon[J].Physical Review B(S2469-9950),2014,89(3):035424. [38] Daalderop G H O,Kelly P J,Schuurmans M F H.First-principles Calculation of the Magnetocrystalline Anisotropy Energy of Iron,Cobalt,and Nickel[J].Physical Review B Condensed Matter(S2469-9950),1990,41(17):11919-11937. [39] Dieny B,Chshiev M.Perpendicular Magnetic Anisotropy at Transition Metal/oxide Interfaces and Applications[J].Review of Modern Physics(S0034-6861),2017,89(2):025008. [40] Umetsu R Y,Sakuma A,Fukamichi K.Magnetic Anisotropy Energy of Antiferromagnetic L10-type Equiatomic Mn Alloys[J].Applied Physics Letters(S0003-6951),2006,89(5):052504. [41] Krupin O,Bihlmayer G,Döbrich K M,et al.Rashba Effect at the Surfaces of Rare-earth Metals and Their Monoxides[J].New Journal of Physics(S1367-2630),2009,11(1):013035. [42] Nitta J,Akazaki T,Takayanagi H,et al.Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/ In0.52Al0.48As Heterostructure[J].Physical Review Letters(S0031-9007),1997,78(7):1335. [43] Zhang X,Liu Q,Luo J W,et al.Hidden Spin Polarization in Inversion-symmetric Bulk Crystals[J].Nature Physics(S1745-2473),2014,10(5):387-393. |
[1] | 李智杰, 石昊琦, 李昌华, 张颉. 基于改进遗传算法的影像中心布局优化方法[J]. 系统仿真学报, 2022, 34(6): 1173-1184. |
[2] | 陈斌, 刘悦, 杨亚磊. 基于STN的机场航班过站保障时间协同规划建模[J]. 系统仿真学报, 2022, 34(6): 1196-1207. |
[3] | 杨凯, 陈纯毅, 胡小娟, 于海洋. 蒙卡渲染画面多特征非局部均值滤波降噪算法[J]. 系统仿真学报, 2022, 34(6): 1259-1266. |
[4] | 陈麒, 崔昊杨. 基于改进鸽群层级的无人机集群视觉巡检模型[J]. 系统仿真学报, 2022, 34(6): 1275-1285. |
[5] | 王沐晴, 张磊, 范秀敏, 骆晓萌, 朱文敏. VR外设驱动的虚拟人姿态优化仿真方法[J]. 系统仿真学报, 2022, 34(6): 1296-1303. |
[6] | 陆承, 靳学胜. 基于Steam VR的交互仿真水枪灭火训练系统设计[J]. 系统仿真学报, 2022, 34(6): 1312-1319. |
[7] | 高宏鼐, 付丽疆, 夏倩, 郭亚. 可观测度在光合作用模型性能评估中的应用[J]. 系统仿真学报, 2022, 34(6): 1330-1342. |
[8] | 倪凌佳, 黄晓霞, 李红旮, 张子博. 基于协作式深度强化学习的火灾应急疏散仿真研究[J]. 系统仿真学报, 2022, 34(6): 1353-1366. |
[9] | 蒙盾, 胡卓, 张华军. 基于改进A*算法的多层邮轮疏散系统仿真[J]. 系统仿真学报, 2022, 34(6): 1375-1382. |
[10] | 郭宇飞, 赵康, 海永清. 面向有限元分析的三角网格布尔运算方法[J]. 系统仿真学报, 2022, 34(5): 1003-1014. |
[11] | 吴桐, 王清辉, 徐志佳. 三周期极小曲面多孔材料渗透率尺度特性研究[J]. 系统仿真学报, 2022, 34(5): 1015-1024. |
[12] | 蒋阳升, 王思琛, 高宽, 刘梦, 姚志洪. 混入智能网联车队的混合交通流元胞自动机模型[J]. 系统仿真学报, 2022, 34(5): 1025-1032. |
[13] | 梁江涛, 王慧琴. 基于改进蚁群算法的建筑火灾疏散路径规划研究[J]. 系统仿真学报, 2022, 34(5): 1044-1053. |
[14] | 张其文, 张斌. 基于教学优化算法求解置换流水车间调度问题[J]. 系统仿真学报, 2022, 34(5): 1054-1063. |
[15] | 邢根上, 鲁芳, 李书山, 罗定提. 基于产品体验性的供应链交货模型与仿真研究[J]. 系统仿真学报, 2022, 34(5): 1064-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||