1 |
Kairouz P, McMahan H B, Avent B, et al. Advances and Open Problems in Federated Learning[J]. Foundations and Trends® in Machine Learning, 2021, 14(1/2): 1-210.
|
2 |
Geyer Robin C, Klein Tassilo, Nabi Moin. Differentially Private Federated Learning: A Client Level Perspective[EB/OL]. (2018-03-01) [2023-11-21]. .
|
3 |
Liu Yang, Kang Yan, Xing Chaoping, et al. A Secure Federated Transfer Learning Framework[J]. IEEE Intelligent Systems, 2020, 35(4): 70-82.
|
4 |
Truex S, Baracaldo N, Anwar A, et al. A Hybrid Approach to Privacy-preserving Federated Learning[C]//Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2019: 1-11.
|
5 |
Zhang Chengliang, Li Suyi, Xia Junzhe, et al. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning[C]//2020 USENIX Annual Technical Conference (USENIX ATC 20). Berkeley: USENIX Association, 2020: 493-506.
|
6 |
McMahanB, Moore E, Ramage D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Chia Laguna Resort: PMLR, 2017: 1273-1282.
|
7 |
Li Li, Fan Yuxi, Tse M, et al. A Review of Applications in Federated Learning[J]. Computers & Industrial Engineering, 2020, 149: 106854.
|
8 |
Wang Zhibo, Song Mengkai, Zhang Zhifei, et al. Beyond Inferring Class Representatives: User-Level Privacy Leakage from Federated Learning[C]//IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 2512-2520.
|
9 |
Liu Pengrui, Xu Xiangrui, Wang Wei. Threats, Attacks and Defenses to Federated Learning: Issues, Taxonomy and Perspectives[J]. Cybersecurity, 2022, 5(1): 4.
|
10 |
Banner R, Nahshan Y, Soudry Daniel. Post Training 4-Bit Quantization of Convolutional Networks for Rapid-Deployment[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 7950-7958.
|
11 |
Banner R, Hubara Itay, Hoffer Elad, et al. Scalable Methods for 8-Bit Training of Neural Networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 5151-5159.
|
12 |
Dettmers T, Lewis M, Belkada Y, et al. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale[C]//Advances in Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 30318-30332.
|
13 |
Tramèr Florian, Terzis A, Steinke T, et al. Debugging Differential Privacy: A Case Study for Privacy Auditing[EB/OL]. (2022-03-28) [2023-11-21]. .
|
14 |
Anderson A G, Berg C P. The High-Dimensional Geometry of Binary Neural Networks[EB/OL]. (2017-05-19) [2023-11-25]. .
|
15 |
Baskin Chaim, Liss Natan, Schwartz Eli, et al. UNIQ: Uniform Noise Injection for Non-uniform Quantization of Neural Networks[J]. ACM Transactions on Computer Systems, 2021, 37(1/4): 4.
|
16 |
Volos C K, Kyprianidis I M, Stouboulos I N. Image Encryption Process Based on Chaotic Synchronization Phenomena[J]. Signal Processing, 2013, 93(5): 1328-1340.
|
17 |
Verma Raksha, Kumari Anjali, Anand Adarsh, et al. Revisiting Shift Cipher Technique for Amplified Data Security[J]. Journal of Computational and Cognitive Engineering, 2024, 3(1): 8-14.
|
18 |
Pathak M A, Rane S, Raj B. Multiparty Differential Privacy Via Aggregation of Locally Trained Classifiers[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2010: 1876-1884.
|
19 |
Li Yong, Song Xiao, Tu Yuchun, et al. GAPBAS: Genetic Algorithm-based Privacy Budget Allocation Strategy in Differential Privacy K-means Clustering Algorithm[J]. Computers & Security, 2024, 139: 103697.
|
20 |
Lingjuan Lü, Yu Han, Ma Xingjun, et al. Privacy and Robustness in Federated Learning: Attacks and Defenses[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 8726-8746.
|
21 |
Fang Chen, Guo Yuanbo, Hu Yongjin, et al. Privacy-Preserving and Communication-efficient Federated Learning in Internet of Things[J]. computers & Security, 2021, 103: 102199.
|
22 |
Melis L, Song Congzheng, Emiliano De Cristofaro E, et al. Exploiting Unintended Feature Leakage in Collaborative Learning[C]//2019 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE, 2019: 691-706.
|
23 |
Zhao Bo, Mopuri K R, Bilen H. iDLG: Improved Deep Leakage from Gradients[EB/OL]. (2020-01-08) [2023-07-21]. .
|
24 |
Geiping Jonas, Bauermeister Hartmut, Dröge Hannah, et al. Inverting Gradients-How Easy is It to Break Privacy in Federated Learning?[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 16937-16947.
|
25 |
Mahendran A, Vedaldi A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images[J]. International Journal of Computer Vision, 2016, 120(3): 233-255.
|
26 |
Xiao Han, Rasul Kashif, Vollgraf Roland. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms[EB/OL]. (2017-09-15) [2023-11-19]. .
|
27 |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
28 |
Krizhevsky Alex. Learning Multiple Layers of Features from Tiny Images[EB/OL]. (2009-04-08) [2023-11-25]. .
|
29 |
Hochreiter Sepp, Schmidhuber Jürgen. Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
30 |
Stefanshipinkoski. Text_Generation-RNN[EB/OL]. [2023-10-26]. .
|
31 |
So J, Güler Başak, Avestimehr A S. Turbo-aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning[J]. IEEE Journal on Selected Areas in Information Theory, 2021, 2(1): 479-489.
|
32 |
Chen Jingxue, Yan Hang, Liu Zhiyuan, et al. When Federated Learning Meets Privacy-preserving Computation[J]. ACM Computing Surveys, 2024, 56(12): 319.
|
33 |
Bell J H, Bonawitz K A, Gascón Adrià, et al. Secure Single-server Aggregation with (Poly)Logarithmic Overhead[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 1253-1269.
|
34 |
Kadhe S, Rajaraman N, Koyluoglu O O, et al. FastSecAgg: Scalable Secure Aggregation for Privacy-Preserving Federated Learning[EB/OL]. (2020-09-23) [2024-09-25]. .
|
35 |
Choi Beongjun, Sohn Jy-yong, Han Dongjun, et al. Communication-computation Efficient Secure Aggregation for Federated Learning[EB/OL]. (2021-07-12) [2024-09-25]. .
|
36 |
Fereidooni Hossein, Marchal Samuel, Miettinen Markus, et al. SAFELearn: Secure Aggregation for Private Federated Learning[C]//2021 IEEE Security and Privacy Workshops (SPW). Piscataway: IEEE, 2021: 56-62.
|
37 |
Huang Yuxian, Yang Geng, Zhou Hao, et al. VPPFL: A Verifiable Privacy-preserving Federated Learning Scheme Against Poisoning Attacks[J]. Computers & Security, 2024, 136: 103562.
|